Fibonacci numbers (n = 1 to 100)

The definition

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2(n >=2)

Further information is here.

```  n : Fn (alen) = factors

1 : 1 (1) = unit
2 : 1 (1) = unit
3 : 2 (1) = prime
4 : 3 (1) = prime
5 : 5 (1) = prime

6 : 8 (1) = 2^3
7 : 13 (2) = prime
8 : 21 (2) = 3 * 7
9 : 34 (2) = 2 * 17
10 : 55 (2) = 5 * 11

11 : 89 (2) = prime
12 : 144 (3) = 2^4 * 3^2
13 : 233 (3) = prime
14 : 377 (3) = 13 * 29
15 : 610 (3) = 2 * 5 * 61

16 : 987 (3) = 3 * 7 * 47
17 : 1597 (4) = prime
18 : 2584 (4) = 2^3 * 17 * 19
19 : 4181 (4) = 37 * 113
20 : 6765 (4) = 3 * 5 * 11 * 41

21 : 10946 (5) = 2 * 13 * 421
22 : 17711 (5) = 89 * 199
23 : 28657 (5) = prime
24 : 46368 (5) = 2^5 * 3^2 * 7 * 23
25 : 75025 (5) = 5^2 * 3001

26 : 121393 (6) = 233 * 521
27 : 196418 (6) = 2 * 17 * 53 * 109
28 : 317811 (6) = 3 * 13 * 29 * 281
29 : 514229 (6) = prime
30 : 832040 (6) = 2^3 * 5 * 11 * 31 * 61

31 : 1346269 (7) = 557 * 2417
32 : 2178309 (7) = 3 * 7 * 47 * 2207
33 : 3524578 (7) = 2 * 89 * 19801
34 : 5702887 (7) = 1597 * 3571
35 : 9227465 (7) = 5 * 13 * 141961

36 : 14930352 (8) = 2^4 * 3^3 * 17 * 19 * 107
37 : 24157817 (8) = 73 * 149 * 2221
38 : 39088169 (8) = 37 * 113 * 9349
39 : 63245986 (8) = 2 * 233 * 135721
40 : 102334155 (9) = 3 * 5 * 7 * 11 * 41 * 2161

41 : 165580141 (9) = 2789 * 59369
42 : 267914296 (9) = 2^3 * 13 * 29 * 211 * 421
43 : 433494437 (9) = prime
44 : 701408733 (9) = 3 * 43 * 89 * 199 * 307
45 : 1134903170 (10) = 2 * 5 * 17 * 61 * 109441

46 : 1836311903 (10) = 139 * 461 * 28657
47 : 2971215073 (10) = prime
48 : 4807526976 (10) = 2^6 * 3^2 * 7 * 23 * 47 * 1103
49 : 7778742049 (10) = 13 * 97 * 6168709
50 : 12586269025 (11) = 5^2 * 11 * 101 * 151 * 3001

51 : 20365011074 (11) = 2 * 1597 * 6376021
52 : 32951280099 (11) = 3 * 233 * 521 * 90481
53 : 53316291173 (11) = 953 * 55945741
54 : 86267571272 (11) = 2^3 * 17 * 19 * 53 * 109 * 5779
55 : 139583862445 (12) = 5 * 89 * 661 * 474541

56 : 225851433717 (12) = 3 * 7^2 * 13 * 29 * 281 * 14503
57 : 365435296162 (12) = 2 * 37 * 113 * 797 * 54833
58 : 591286729879 (12) = 59 * 19489 * 514229
59 : 956722026041 (12) = 353 * 2710260697
60 : 1548008755920 (13) = 2^4 * 3^2 * 5 * 11 * 31 * 41 * 61 * 2521

61 : 2504730781961 (13) = 4513 * 555003497
62 : 4052739537881 (13) = 557 * 2417 * 3010349
63 : 6557470319842 (13) = 2 * 13 * 17 * 421 * 35239681
64 : 10610209857723 (14) = 3 * 7 * 47 * 1087 * 2207 * 4481
65 : 17167680177565 (14) = 5 * 233 * 14736206161

66 : 27777890035288 (14) = 2^3 * 89 * 199 * 9901 * 19801
67 : 44945570212853 (14) = 269 * 116849 * 1429913
68 : 72723460248141 (14) = 3 * 67 * 1597 * 3571 * 63443
69 : 117669030460994 (15) = 2 * 137 * 829 * 18077 * 28657
70 : 190392490709135 (15) = 5 * 11 * 13 * 29 * 71 * 911 * 141961

71 : 308061521170129 (15) = 6673 * 46165371073
72 : 498454011879264 (15) = 2^5 * 3^3 * 7 * 17 * 19 * 23 * 107 * 103681
73 : 806515533049393 (15) = 9375829 * 86020717
74 : 1304969544928657 (16) = 73 * 149 * 2221 * 54018521
75 : 2111485077978050 (16) = 2 * 5^2 * 61 * 3001 * 230686501

76 : 3416454622906707 (16) = 3 * 37 * 113 * 9349 * 29134601
77 : 5527939700884757 (16) = 13 * 89 * 988681 * 4832521
78 : 8944394323791464 (16) = 2^3 * 79 * 233 * 521 * 859 * 135721
79 : 14472334024676221 (17) = 157 * 92180471494753
80 : 23416728348467685 (17) = 3 * 5 * 7 * 11 * 41 * 47 * 1601 * 2161 * 3041

81 : 37889062373143906 (17) = 2 * 17 * 53 * 109 * 2269 * 4373 * 19441
82 : 61305790721611591 (17) = 2789 * 59369 * 370248451
83 : 99194853094755497 (17) = prime
84 : 160500643816367088 (18) = 2^4 * 3^2 * 13 * 29 * 83 * 211 * 281 * 421 * 1427
85 : 259695496911122585 (18) = 5 * 1597 * 9521 * 3415914041

86 : 420196140727489673 (18) = 6709 * 144481 * 433494437
87 : 679891637638612258 (18) = 2 * 173 * 514229 * 3821263937
88 : 1100087778366101931 (19) = 3 * 7 * 43 * 89 * 199 * 263 * 307 * 881 * 967
89 : 1779979416004714189 (19) = 1069 * 1665088321800481
90 : 2880067194370816120 (19) = 2^3 * 5 * 11 * 17 * 19 * 31 * 61 * 181 * 541 * 109441

91 : 4660046610375530309 (19) = 13^2 * 233 * 741469 * 159607993
92 : 7540113804746346429 (19) = 3 * 139 * 461 * 4969 * 28657 * 275449
93 : 12200160415121876738 (20) = 2 * 557 * 2417 * 4531100550901
94 : 19740274219868223167 (20) = 2971215073 * 6643838879
95 : 31940434634990099905 (20) = 5 * 37 * 113 * 761 * 29641 * 67735001

96 : 51680708854858323072 (20) = 2^7 * 3^2 * 7 * 23 * 47 * 769 * 1103 * 2207 * 3167
97 : 83621143489848422977 (20) = 193 * 389 * 3084989 * 361040209
98 : 135301852344706746049 (21) = 13 * 29 * 97 * 6168709 * 599786069
99 : 218922995834555169026 (21) = 2 * 17 * 89 * 197 * 19801 * 18546805133
100 : 354224848179261915075 (21) = 3 * 5^2 * 11 * 41 * 101 * 151 * 401 * 3001 * 570601
```

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima