In Unsolved Problem in Number Theory D5,
Can arbitrary number n (≠9m±4) represent as a sum of three cubes,
i.e. n=x3+y3+z3, x, y, z ∈ Z ?
Can arbitrary number n represent as a sum of four cubes where two are same number,
i.e. n=x3+y3+2z3, x, y, z ∈ Z ?
First we search the solutions of 1 ≤ n ≤ 10000 by simple search method.
Next, more refined way.
[1] Richard K. Guy, Unsolved Problems in Number Theory (Second Edition), Springer, 1994.
[2] D. R. Heath-brown, W. M. Lioen, and H. J. J. Te Riele,On Solving the Diophantine Equation x3+y3+z3=k on a Vector Computer,
Math. Comp. 61(1993),235-244.
[3] Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation x3+y3+z3=n,
Math. Comp. 55(1997),841-851.
[4] B. Conn and L. Vaserstein, On sums of three integral cubes, Contemp. Math. 166 (1994), 285-294.
[5] Noam D. Elkies, x^3 + y^3 + z^3 = d, NMBRTHRY archives (July 9, 1996)
[6] Eric Pine, Kim Yarbrough, Wayne Tarrant and Michael Beck, University of Georgia
[7] Noam D. Elkies,Rational points near curves and small nonzero |x3-y2| via lattice reduction,
ANTS IV (2000)
[8] D. J. Bernstein,
http://cr.yp.to/threecubes.html
[9] Leonid Durman,
http://www.uni-math.gwdg.de/jahnel/linkstopaperse.html
http://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt
On April 19, 2007, Leonid Durman found the following results,
156 = 688446456253 + 22321943233 + (-68845427846)3
318 = 478359637993 + 205494427273 + (-49068024704)3
366 = 2418322232573 + 1677345713063 + (-266193616507)3
420 = 88590601490513 + (-2680209928162)3 + (-8776520527687)3
564 = 538724191073 + (-1300749634)3 + (-53872166335)3
758 = 6623257444093 + 1099625679363 + (-663334553003)3
789 = 189181179579263 + 48362286874853 + (-19022888796058)3
894 = 198681276395563 + 23226264112513 + (-19878702430997)3
933 = 9982461593 + (-165963535)3 + (-996714691)3
948 = 3230195731723 + 636572280553 + (-323841549995)3
The team of University of Georgia had already found a solution of case n=52 for
n=x3+y3+z3.
The solution is
52 = 607029013173 + 239612924543 + (-61922712865)3
Mike Oakes found;
3982 = -2 * 332669^3 - 11077811^3 + 11078011^3
5972 = 2 * 2980937^3 + 3002495^3 - 4309669^3
6124 = -2 * 209552^3 - 17513657^3 + 17513677^3
7151 = 2 * 3667541^3 + 3004190^3 - 5010331^3
8581 = -2 * 3842861^3 - 66333785^3 + 66342382^3
8653 = 2 * 30046^3 + 4252402^3 - 4252403^3
Now the remaining numbers are
148, 671, 788
1084, 1121, 1247, 1444, 1462, 1588, 1975
2246, 2300, 2372, 2822
3047, 3268, 3307, 3335, 3380, 3641, 3676, 3956
4036, 4108, 4369, 4388, 4819, 4883, 4990
5188, 5279, 5468, 5540, 5620, 5629
6707, 6980
7097, 7106, 7132, 7177, 7323, 7519, 7708, 7727, 7799, 7853, 7862, 7988
8114, 8380, 8572, 8588, 8644, 8779, 8887, 8968
9274, 9463, 9589, 9724, 9850
Both tables n=x3+y3+z3, n=x3+y3+2z3
are updated by D. J. Berstein and Jean-Charles Meyrignac.
The search range of n=x3+y3+z3 is up to 10^10 and beyond,
and the search range of n=x3+y3+2z3 is up to max(|x|,|y|,|z|) = 4000000.
(but unfortunately some data were missed.)
Search range of n=x3+y3+2z3
was enhanced from max { |x|, |y|, |z| } ≤ 700000 to 106.
New results of this range are,
2176, 2561, 3730, 3784, 5908, 6548, 6782, 7276, 8104, 9320, 9526
Chapter 3 n=(x+y+z)(1/x+1/y+1/z) |
"Mathematician's Secret Room" | Chapter 5 Repeating Decimals |
---|---|---|
Chapter 3 (Japanese) | index (Japanese) | Chapter 5 (Japanese) |