- Definition 1.
- k2g=mn(m2-n2)
k, m, n, g in N (integer > 0)
- Definition 2.
- x2+gy2=z2
x2-gy2= -w2x, y, z, w in N (integer > 0)
m=gy2, n=x2
- Definition 3.
- (x/z2, y/z3) on elliptic curve Y2=X3-g2X
x, y, z in Z (integer)
X, Y in Q (rational)X=mg/n, Y=kg2/n2
We are using the same characters x, y, z in the definition 2 and 3,
but I think there's no confusion.There are 361 congruum g : 1 <= g <= 999.
53, 181, 349, 485, 533The solution of the following numbers are not in the range of 1 <= y <= 10,000.
101, 103, 118, 127, 142, 157, 173, 191, 197, 199,
223, 229, 237, 263, 269, 271, 277, 278, 293,
302, 303, 311, 317, 326, 327, 334, 358, 365, 367, 373, 382, 389, 397, 398,
407, 413, 415, 421, 431, 439, 446, 453, 454, 461, 463, 478, 487, 493,
501, 502, 503, 519, 541, 542, 543, 557, 566, 573, 583, 597, 599,
607, 613, 614, 623, 631, 638, 647, 653, 661, 662, 677, 685, 695,
701, 703, 717, 718, 727, 733, 742, 743, 757, 758, 766, 767, 773, 781, 789, 797,
807, 815, 822, 823, 829, 831, 838, 853, 862, 863, 877, 878, 886, 887, 893,
911, 917, 919, 926, 933, 941, 958, 965, 967, 974, 982, 983, 989, 991, 997, 998
Congruum g : 1 <= g <= 999 g x y z w m (=gy2) n (=x2) xe(=g2y2) ye(=g2yzw) ze(=x) 5 2 1 3 1 5 4 25 75 2 1562 2257 5283 4799 25470245 2439844 127351225 143054962675 1562 13 6 5 19 17 325 36 4225 272935 6 29 70 13 99 1 4901 4900 142129 1082367 70 37 42 145 883 881 777925 1764 28783225 154421605115 42 41 8 5 33 31 1025 64 42025 8598315 8 368 85 657 401 296225 135424 12145225 37644053445 368 53 34034 5945 55059 26737 1873180325 1158313156 99278557225 24583549770420915 34034 61 3198 445 4723 1361 12079525 10227204 736851025 10643776627535 3198 65 4 1 9 7 65 16 4225 266175 4 112 17 177 79 18785 12544 1221025 1004328975 112 4088 689 6897 3761 30856865 16711744 2005696225 75510873577425 4088 85 6 1 11 7 85 36 7225 556325 6 109 42 5 67 31 2725 1764 297025 123384185 42 137 56 5 81 17 3425 3136 469225 129224565 56 145 12 1 17 1 145 144 21025 357425 12 1128 185 2497 1921 4962625 1272384 719580625 18657508153625 1128 149 238 25 387 191 93125 56644 13875625 41025782925 238 181 34950 4121 65539 43039 3073858021 1221502500 556368301801 380821752178542701 34950 257 11752 865 18177 7361 192293825 138109504 49419513025 7644364360749345 11752 265 36 5 89 73 6625 1296 1755625 2281259125 36 552 37 817 241 362785 304704 96138025 511602397525 552 349 113730 7453 179779 80321 19385975941 12934512900 6765705603409 13108410776581925327 113730 457 1008 485 10417 10319 107497825 1016064 49126506025 10888158024855595 1008 485 81314 6409 162891 115367 19921511285 6611966596 9661932973225 28330382468305478925 81314 505 168 13 337 239 85345 28224 43099225 267026221475 168 67308 3077 96497 15841 4781304145 4530366864 2414558593225 1199517692913950725 67308 509 170 13 339 239 86021 28900 43784689 272883022113 170 533 137522 6025 195603 20879 19348233125 18912300484 10312608255625 6990313848049415325 137522 565 558 41 1123 799 949765 311364 536617225 11743763263325 558 629 10 1 27 23 629 100 395641 245693061 10 689 20 1 33 17 689 400 474721 266318481 20 709 210 17 499 401 204901 44100 145274809 1709961412123 210 761 40 29 801 799 640001 1600 487040761 10748468965491 40 793 132 5 193 49 19825 17424 15721225 29735124965 132 821 6118 905 26643 25199 672419525 37429924 552056430025 409544713903279485 6118 905 952 53 1857 1279 2542145 906304 2300641225 103099242932475 952 949 30 1 43 7 949 900 900601 271080901 30 985 408 13 577 1 166465 166464 163968025 7277657725 408
previous | index | next |
---|