【 有名公式の誘導 】
                                                                                                       < Home >
       

      いずれの公式も  arctan(1/1)  の逐次展開で求める事ができる。
      以下に実例を示す。
       


      [Euler の公式]

      arctan(1/1)
                 ↓
      arctan(1/2)+arctan(1/3)


      [Dahse の公式]

      arctan(1/2)+arctan(1/3)
                 ↓
      arctan(1/2)+arctan(1/5)+arctan(1/8)


      [Vega の公式]

      arctan(1/2)+arctan(1/3)
                 ↓
      2arctan(1/2)-arctan(1/7)


      [Clausen の公式]

      arctan(1/2)+arctan(1/3)
                 ↓
      2arctan(1/3)+arctan(1/7)


      [Gauss の公式]

      arctan(1/2)+arctan(1/3)
                 ↓
      2arctan(1/3)+arctan(1/7)
                 ↓
      2arctan(1/5)+arctan(1/7)+2arctan(1/8)
                 ↓
      2arctan(1/5)+3arctan(1/7)-2arctan(1/57)
                 ↓
      5arctan(1/7)+2arctan(1/18)-2arctan(1/57)
                 ↓
      5arctan(1/12)+5arctan(1/17)+2arctan(1/18)-2arctan(1/57)
                 ↓
      10arctan(1/17)+2arctan(1/18)+5arctan(1/41)-2arctan(1/57)
                 ↓
      12arctan(1/18)+5arctan(1/41)-2arctan(1/57)+10arctan(1/307)
                 ↓
      12arctan(1/18)+5arctan(1/41)+8arctan(1/57)-10arctan(1/70)
                 ↓
      12arctan(1/18)+8arctan(1/57)-5arctan(1/70)+5arctan(1/99)
                 ↓
      12arctan(1/18)+8arctan(1/57)-5arctan(1/239)


      [Machin の公式]

      12arctan(1/18)+8arctan(1/57)-5arctan(1/239)
                 ↓
      12arctan(1/18)+8arctan(1/70)-5arctan(1/239)+8arctan(1/307)
                 ↓
      8arctan(1/17)+4arctan(1/18)+8arctan(1/70)-5arctan(1/239)
                 ↓
      4arctan(1/5)-4arctan(1/7)+8arctan(1/17)+8arctan(1/70)-5arctan(1/239)
                 ↓
      4arctan(1/5)-4arctan(1/12)+4arctan(1/17)+8arctan(1/70)-5arctan(1/239)
                 ↓
      4arctan(1/5)-4arctan(1/41)+8arctan(1/70)-5arctan(1/239)
                 ↓
      4arctan(1/5)+4arctan(1/70)-4arctan(1/99)-5arctan(1/239)
                 ↓
      4arctan(1/5)-arctan(1/239)


      [Rutherford の公式]

      4arctan(1/5)-arctan(1/239)
                 ↓
      4arctan(1/5)-arctan(1/70)+arctan(1/99)


      [Vega の公式]

      4arctan(1/5)-arctan(1/239)
                 ↓
      4arctan(1/5)-arctan(1/408)-arctan(1/577)
                 ↓
      4arctan(1/5)-2arctan(1/408)+arctan(1/1393)


       
      < Home >