Logical Dynamics of Speech Acts

Tomoyuki Yamada

Hokkaido University

1. Development of DMEDL⁺

Definition 1 Take a countably infinite set Aprop of proposition letters and a finite set I of agents, with p ranging over Aprop and i, j, k over I. The language of Multi-agent Epistemic Deontic Logic MEDL is given by:

$$\varphi ::= \top \mid p \mid \neg \varphi \mid (\varphi \land \psi) \mid K_i \varphi \mid O_{(i,j,k)} \varphi$$

Intended reading

 $O_{(i,j,k)}\varphi$ It is obligatory for the agent (obligor) *i* with respect to the agent (obligee) *j* by the name of the agent *k* to see to it that φ .

Definition 2 Take a countably infinite set Aprop of proposition letters and a finite set I of agents, with p ranging over Aprop and i, j, k over I. The languages of Dynamified Multi-agent Epistemic Deontic Logic DMEDL⁺ is given by:

$$\varphi$$
 ::= $\top | p | \neg \varphi | (\varphi \land \psi) | K_i \varphi | O_{(i,j,k)} \varphi | [\pi] \varphi$

$$\pi$$
 ::= Command_{(i,j)}\varphi | Promise_{(i,j)}\varphi | Reqest_{(i,j)}\varphi | Assert_{(i,j)}\varphi

Intended reading

 $[\pi]\varphi$ Whenever an act of type π is performed, φ holds in the resulting situation.

 $\operatorname{Command}_{(i,j)} \varphi$ The type of *i*'s acts of commanding *j* to see to it that φ .

- $\operatorname{Promise}_{(i,j)}\varphi$ The type of *i*'s acts of promising *j* that *i* will see to it that φ .
- $\operatorname{Request}_{(i,j)}\varphi$ The type of *i*'s acts of requesting *j* to see to it that φ .

Assert_{(*i*,*j*) φ The type of *i*'s acts of asserting to *j* that φ}

Semantics

An epistemic deontic model $\mathcal{M} = \langle W^{\mathcal{M}}, \{E_i^{\mathcal{M}}: i \in I\}, \{O_{(i,j,k)}^{\mathcal{M}}: i, j, k \in I\}, V^{\mathcal{M}} \rangle$ includes an epistemic accessibility relation $E_i^{\mathcal{M}}$ for each agent $i \in I$ and a deontic accessibility relation $O_{(i,j,k)}^{\mathcal{M}}$ for each triple (i, j, k) of agents $i, j, k \in I$. Truth definition for the languages of MEDL and DMEDL⁺ is given with reference to the class of epistemic deontic models.

Theorem 1 *There are complete axiomatizations of* MEDL *and* DMEDL⁺ *with respect to the class of epistemic deontic models.*

2. Some Illocutionary Acts in DMEDL⁺

Though not without exceptions, acts of [C]ommanding, [P]romising, [R]equesting, and [A]sserting [U]sually [G]enerate [O]bligations. Note that different obligations are generated by different kinds of acts.

Proposition 1 (CUGO Principle, Yamada 2007) If φ is a formula of MEDL and is free of occurrences of the modal operators of the form $O_{(i,i,j)}$, the following formula is valid:

$[Com_{(i,j)}\varphi]O_{(j,i,i)}\varphi$.

Proposition 2 (PUGO Principle, Yamada 2008) If φ is a formula of MEDL and is free of occurrences of the modal operators of the form $O_{(i,i,i)}$, the following formula is valid:

$$[Prom_{(i,j)}\varphi]O_{(i,j,i)}\varphi$$

Proposition 3 (RUGO Principle, Yamada 2011) If φ is a formula of MEDL and is free of occurrences of the modal operator of the form $O_{(j,i,j)}$, the following formula is valid:

$$Req_{(i,j)}\varphi]O_{(j,i,i)}(K_iO_{(j,i,j)}\varphi \vee K_i \neg O_{(j,i,j)}\varphi)$$
.

Proposition 4 (AUGO Principle Yamada 2016) If φ is a formula of MEDL and is free of occurrences of the modal operators of the form $O_{(i,j,i)}$, the following formula is valid:

$$[\operatorname{assert}_{(i,j)}\varphi]O_{(i,j,i)}O_{(j,i,i)}K_{j}\varphi$$

The Plan

Į.

I will explore the logical dynamics of utterance-context interaction by extending and/or revising DMEDL⁺ with inputs from other researchers.