n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
900 <= n <= 999, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010


nxyz
900-22-2933
901-8-1114
902677
* 903-11962230569-1532723079217448796540
906???
9074883-88
9081531092-1093
909-3-410
910-26-2935
9111216-17
* 912-14232281-5564834055956937
915925419235-19924
9161736-37
917-23-3135
918459
919478
9201-1718
921???
924-4-711
925-6-1920
926240351-385
9272-1718
928-9-2324
9293352-56
9304-1113
* 933998246159-165963535-996714691
9341111-12
935-1-410
9361320-21
937-269
938-11-2728
9394-510
9425-1617
9431424-25
944-169
9457-911
946169
947-579
* 94832301957317263657228055-323841549995
951-10-2526
952-1015-20892166
953269
9543035-41
955-524-11891222
956-8-913
957-602-827922
960-467617-808078857225
961-3-711
962-6-1315
9633-410
* 96431384771296520910-296638063
965-2-310
966-965-25012548
* 969131960617395148-17397679
970-22-4345
971742355643-55687
972-1-310
9730-310
9741-310
975???
978866640169-40303
979559
980578
9812-310
982-2904-75117653
9834-1718
984-2486-79618041
987-1-711
9880-711
9891-711
990-5-611
991-1-210
9922152-53
9931-210
9962-711
997-388
998-1-110
9990-110
10000010

* 903, 912, 964 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 933, 948 : Leonid Durman (April 19, 2007)
http://www.uni-math.gwdg.de/jahnel/linkstopaperse.html
http://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt
* 969 : Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation x3+y3+z3=n, Math. Comp. 55(1997),841-851.


back (Japanese version) back (English version)

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima