Solutions of n=x3+y3+z3
900 <= n <= 999, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010
n x y z 900 -22 -29 33 901 -8 -11 14 902 6 7 7 * 903 -11962230569 -15327230792 17448796540 906 ? ? ? 907 48 83 -88 908 153 1092 -1093 909 -3 -4 10 910 -26 -29 35 911 12 16 -17 * 912 -14232281 -55648340 55956937 915 9254 19235 -19924 916 17 36 -37 917 -23 -31 35 918 4 5 9 919 4 7 8 920 1 -17 18 921 ? ? ? 924 -4 -7 11 925 -6 -19 20 926 240 351 -385 927 2 -17 18 928 -9 -23 24 929 33 52 -56 930 4 -11 13 * 933 998246159 -165963535 -996714691 934 11 11 -12 935 -1 -4 10 936 13 20 -21 937 -2 6 9 938 -11 -27 28 939 4 -5 10 942 5 -16 17 943 14 24 -25 944 -1 6 9 945 7 -9 11 946 1 6 9 947 -5 7 9 * 948 323019573172 63657228055 -323841549995 951 -10 -25 26 952 -1015 -2089 2166 953 2 6 9 954 30 35 -41 955 -524 -1189 1222 956 -8 -9 13 957 -602 -827 922 960 -467617 -808078 857225 961 -3 -7 11 962 -6 -13 15 963 3 -4 10 * 964 31384771 296520910 -296638063 965 -2 -3 10 966 -965 -2501 2548 * 969 1319606 17395148 -17397679 970 -22 -43 45 971 7423 55643 -55687 972 -1 -3 10 973 0 -3 10 974 1 -3 10 975 ? ? ? 978 8666 40169 -40303 979 5 5 9 980 5 7 8 981 2 -3 10 982 -2904 -7511 7653 983 4 -17 18 984 -2486 -7961 8041 987 -1 -7 11 988 0 -7 11 989 1 -7 11 990 -5 -6 11 991 -1 -2 10 992 21 52 -53 993 1 -2 10 996 2 -7 11 997 -3 8 8 998 -1 -1 10 999 0 -1 10 1000 0 0 10 * 903, 912, 964 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 933, 948 : Leonid Durman (April 19, 2007)
http://www.uni-math.gwdg.de/jahnel/linkstopaperse.html
http://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt
* 969 : Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation x3+y3+z3=n, Math. Comp. 55(1997),841-851.
back (Japanese version) | back (English version) |
---|