n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
800 <= n <= 899, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010


nxyz
8001111118489-19740
801249
802-4-1113
803-72-7794
804-830-9951159
807-73-8298
* 808-496988176-941867727985902023
809-9-1517
8101321-22
811577
8127-1213
8138352959-2981
816-1-1617
8170-1617
818-1-811
8190-811
820349
821420877-908
822-17-1722
8252-1617
826-1183-13351592
827-359
828-378
829-327-353429
* 830125723125143271714-170174279
8317-810
* 8342558544140347272468418-49649244505
835-7-1315
836253695-706
837-11-1820
838-11-1417
839-3-1113
840-917-23152362
8438-1011
8443-1617
8451314-16
846-259
847-278
848-3-510
849-47-6270
852131146-175
853568
854-178
855078
856178
857449
858-2-1113
* 861-382235698-520699762581887061
862259
863278
86495121-138
865-1-1113
8660-1113
867-2-510
870-94729-211225217394
871155555-559
872-43-5059
8736-710
874-1-510
875-8-2122
8761-510
879-193-379395
880316716898-16935
881359
882378
8832-510
8841466724073-25766
885-458-13641381
888-37-4653
889224233-288
8907-1314
891-5-1214
892-3-1718
8933-1113
* 894198681276395562322626411251-19878702430997
89712742228-2359
898-789
899-588

* 808, 830, 834, 861 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 894 : Leonid Durman (April 19, 2007)
http://www.uni-math.gwdg.de/jahnel/linkstopaperse.html
http://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt


back (Japanese version) back (English version)

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima