n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
100 <= n <= 199, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010


nxyz
100-3-67
101-344
102118229-239
105-4-78
1062-35
107-28-4851
108-948-11651345
109-2-25
* 11010993891916540290030-16540291649
111-296-881892
114???
115-6-1011
116-1-25
1170-25
118334
119-2-67
1209461531-1643
123-1-15
1240-15
125005
126015
127-144
1281-67
129144
132-125
133025
134125
1352-67
136225582-593
137-9-1113
138-77-86103
141225
142-3-78
143702384942-84958
144-235
145-7-810
146-5-910
147-50-5667
150260317-367
151-135
152035
153135
154-4-57
155344
* 156688446456252232194323-68845427846
15980119-130
160235
161-2-78
162-345
163-21-2630
164-45-4758
165???
168-1-78
1690-78
1701-78
171-5-68
1721516117044-20357
173-14543-3056931629
17477-8
1772-78
178-10-1315
179335
* 180223403441721-460002
181-245
182913-14
1831016-17
186-455
1872756-58
188-145
189045
190145
191-3-57
192(4)(4)(4)
* 195-2238006277-50874721635227922915
1963-78
197245
198-19-4849
1991522-24

* 110 : Lukes (1995)
* 156 : Leonid Durman (April 19, 2007)
http://www.uni-math.gwdg.de/jahnel/linkstopaperse.html
http://www.uni-math.gwdg.de/jahnel/Arbeiten/Liste/threecubes_20070419.txt
* 180 : Elkies (1996)
* 195 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html


back (Japanese version) back (English version)

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima