Solutions of n=x3+y3+z3
0 <= n <= 99, not equal 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010
n x y z 0 0 0 0 1 0 0 1 2 0 1 1 3 1 1 1 6 -1 -1 2 7 0 -1 2 8 0 0 2 9 0 1 2 10 1 1 2 11 -2 -2 3 12 7 10 -11 15 -1 2 2 16 -511 -1609 1626 17 1 2 2 18 -1 -2 3 19 0 -2 3 20 1 -2 3 21 -11 -14 16 * 24 -2901096694 -15550555555 15584139827 25 -1 -1 3 26 0 -1 3 27 0 0 3 28 0 1 3 29 1 1 3 * 30 -283059965 -2218888517 2220422932 33 ? ? ? 34 -1 2 3 35 0 2 3 36 1 2 3 37 0 -3 4 38 1 -3 4 * 39 117367 134476 -159380 42 ? ? ? 43 2 2 3 44 -5 -7 8 45 2 -3 4 46 -2 3 3 47 6 7 -8 48 -23 -26 31 51 602 659 -796 * 52 23961292454 60702901317 -61922712865 53 -1 3 3 54 -7 -11 12 55 1 3 3 56 -11 -21 22 57 1 -2 4 60 -1 -4 5 61 0 -4 5 62 2 3 3 63 0 -1 4 64 0 0 4 65 0 1 4 66 1 1 4 69 2 -4 5 70 11 20 -21 71 -1 2 4 72 7 9 -10 73 1 2 4 74 ? ? ? * 75 4381159 435203083 -435203231 78 26 53 -55 79 -19 -33 35 80 69241 103532 -112969 81 10 17 -18 82 -11 -11 14 83 -2 3 4 * 84 -8241191 -41531726 41639611 87 -1972 -4126 4271 88 3 -4 5 89 6 6 -7 90 -1 3 4 91 0 3 4 92 1 3 4 93 -5 -5 7 96 10853 13139 -15250 97 -1 -3 5 98 0 -3 5 99 2 3 4 * 24 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 30 : Eric Pine, Kim Yarbrough, Wayne Tarrant and Michael Beck, University of Georgia
Noam D. Elkies,Rational points near curves and small
nonzero |x3-y2| via lattice reduction,
ANTS IV (2000) * 39 : D. R. Heath-brown, W. M. Lioen, and H. J. J. Te Riele,On Solving the Diophantine Equation x3+y3+z3=k on a Vector Computer, Math. Comp. 61(1993),235-244.
* 52 : Eric Pine, Kim Yarbrough, Wayne Tarrant and Michael Beck, University of Georgia
* 75 : Andrew Bremner (1993)
* 84 : B. Conn and L. Vaserstein, On sums of three integral cubes, Contemp. Math. 166 (1994), 285-294.
back (Japanese version) | back (English version) |
---|