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Dynamic Logic of Relation Changers Meets

Brouwer

Ryo Hatano, Tokyo University of Science
Katsuhiko Sano, Hokkaido University

This talk proposes an intuitionistic generalization of van Benthem and Liu (2007)’s

dynamic logic of relation changers, where relation changers are dynamic operators

which rewrite each agentfs accessibility relation. We employ Nishimura (1982)’s Kripke

semantics for a constructive propositional dynamic logic to define the semantics of re-

lation changers. A sound and complete axiomatization of the constructive dynamic

logic of relation changers is provided. Moreover, we follow Hatano and Sano (2020)’s

approach to provide a different semantics for dynamic logic of relation changers, where

relation changers are regarded as bounded morphisms. This alternative semantics leads

us to a semantic completeness proof of the axiomatization for the original semantics,

which does not require a reduction strategy based on recursion axioms.
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Epistemic Infinite-Regress Logics: 
the Surface to Deeper Layers and Latent Infinity 

by 

Tai-Wei Hu, University of Bristol, England 

Mamoru Kaneko, University of Tsukuba, Waseda University 

  

Abstract 

Common knowledge/belief is an important component in game theory, but its infinitary nature often 

hinders progress of game theory as a part of social science. The state of affairs behind a game situation 
may include such an infinite structure as latent. Formally, we consider an infinite-regress logic IR  

with two agents, which is a fixed-point logic. The subscript  is be a bound on the nested depths of 

beliefs and fixed-point (infinite-regress) operators; the limit case =   is unbounded. A proof 
system IR   is constructed within the bound but the corresponding Kripke semantics already 

includes an infinite valuation, which is uniform over different bounds   up to The smallest 
meaningful case is = 3. The soundness-completeness theorem connecting IR  with its semantics 

is provided; the proof theoretical part is interpreted as going from the surface to deeper layers as  
becomes larger. In logic IR , each’s basic beliefs may be different from the other’s, in order to capture 

the feature that the individual beliefs are in the mind of each agent. Nevertheless, they have external 

interactions through their social world, after each's individual logical calculation, and after external 

interactions, each may revise his internal basic beliefs. Then, the situation starts again. 
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Plurivalent Logic for Multi-Agent Systems

Satoshi Tojo

Japan Advanced Institute of Science and Technology

Dynamic Epistemic Logic is versatile in knowledge representation, however, its

Kripke semantics requires a huge number of possible worlds, and furthermore, the

combinatorial number of access relations complicates the description and is not intelli-

gible. On the contrary, sometimes we need more to express; e.g, we want to distinguish

between legible information and illegible one, and so on. To solve such problems, we

employ many-valued logic to the multi-agent system. We extend the semantics of epis-

temic logic to 4-valued one to distinguish the public propositions and private propo-

sitions. Plurivalent Logic provides multiple valuation functions; one strictly refers to

logical truth and so do others to various agent’s epistemic states. Therefore the logic

simply simulates epistemic logic with a pair of truth values. Furthermore, paired se-

mantics can simulate classical logic, weak Kleene logic, and paraconsistent Kleene

logic, with simple designated-value changes.
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Agents, Actions, and Social Reality 
Yasuo NAKAYAMA 

Graduate School of Human Sciences, Osaka University 
nakayama@hus.osaka-u.ac.jp 

 
In this presentation, we propose BDOI-model of atomic agents. BDOI-model 
characterizes mental states of an atomic agent through triple belief, desire, 
normative belief  and explains actions based on mental states and intention. Parts 
of mental states and interpretation of terms can be shared among atomic agents. 
An aim of this presentation is to explain the construction of social reality based 
on an analysis of agents, shared mental states, and actions. 

 
1. Model of Atomic Agents 

Donald Davidson provided the standard theory of action (Davidson 1980). The core of 
this theory can be expressed by the following three theses (Schlosser 2021, Sect. 2 and 
Sect. 2.1). 

  
(1a) The notion of intentional action is more fundamental than the notion of action. 
(1b) There is a close connection between intentional action and acting for a reason.  
(1c) [Theory of agency] A being has the capacity to act intentionally just in case it 

has the right functional organization: just in case the instantiation of certain 
mental states and events (such as desires, beliefs, and intentions) would cause 
the right events (such as certain movements) in the right way.  

 
In this presentation, we accept the first two theses and modify (1c). We propose that 

mental states can be characterized by beliefs, desires, and normative beliefs and that an 
intention leads an agent, based on the given mental states, to performance of an action. 
John Searle pointed out that an action may have desire-based reason or desire-
independent reason (Searle 2010: Chap. 6 Sect. 1). Modifying Searle s position, we 
propose that an action may have reason that is based on both desires and normative beliefs. 

Now, we start our proposal with the following description of atomic agents and call it 
BDOI-model of atomic agents (Nakayama 2017a, 2021). 

 
(2a) [Atomic agent] An atomic agent can perform some actions. A part of mental states 

of an atomic agent can be characterized through triple belief, desire, normative 
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belief , where each of the three components of the triple is a set of First-Order 
sentences (FO-sentences). I call this triple BDO-system. This BDO-system can be 
updated when an agent obtains new information. 

(2b) [Transparency] Mental states described in (2a) is transparent in the following 
sense: 

(i) [Belief] If A believes that , then A knows that A believes that . 
(ii) [Desire] If A desires that , then A knows that A desires that . 
(iii) [Normative belief] If A believes that it is obligated that , then A knows that A 

believes that it is obligated that .  
(2c) [Intention as decision making] An atomic agent chooses an action type based on 

her/his BDO-system and performs it. In such a case, we say that this agent 
intentionally performed this action.  

 
We use not, &, or, , and  as meta-language expressions of logical connectives. 

Pair BB, OB  which is a subsystem of BDO-system BB, DB, OB  is called a BO-system. Let 

cons be an abbreviation of consistent and Cn(X) be an abbreviation of the deductive closure of X. 

 
(3a) [Belief] BBDO  def (cons(BB) & Cn(BB)) 
(3b) [Possibility] MBDO  def cons(BB { }) 
(3c) [Obligation] OBDO  def (cons(BB OB) & Cn(BB OB) & not ( Cn(BB))) 
(3d) [Prohibition] FBDO  def OBDO  
(3e) [Permission] PBDO  def (cons(BB OB { })& not ( Cn(BB))) 
(3f) [Desire] DBDO  def (cons(BB DB) & Cn(BB DB) & not ( Cn(BB))) 
(3g) BDO is consistent def (cons(BB OB) & cons(BB DB)) 
(3h) [Respect] Atomic agent A with BDO-system BB, DB, OB  respects BO-system BBs, 

OBs  def BBs BB & OBs OB & any action type that A chooses to perform is 
compatible with BBs OBs. 

 
According to (3h), an atomic agent who respects a BO-system obeys any obligation in 

the BO-system and she/he chooses only action types that are permitted in the BO-system. 
For example, a player of chess respects the BO-system of chess and she/he plays chess 
keeping out of violation of the BO-system. 

We can update a BDO-system BB, DB, OB  by updating BB or DB or OB. We call the 
framework that allows this kind of updates Dynamic BDO-Logic. A BDO-system in 
Dynamic BDO-Logic contains information about its stage. We write a BDO-system of 
Dynamic BDO-Logic as follows: BDO(k) = BB(k), DB(k), OB(k) . A play of standard 
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two-man games can be described in Dynamic BO-Logic that is a subsystem of Dynamic 
BDO-Logic (Nakayama 2016, 2017a, 2021). 

According to Searle, there are two types of rules, namely regulative and constitutive 
rules (Searle 1969: Chap. 2.5). Regulative rules regulate a pre-existing activity, an activity 
whose existence is logically independent of the rules. Regulative rules characteristically 
take the form of or can be paraphrased as imperatives, e.g., "Officers must wear ties at 
dinner". Constitutive rules constitute an activity the existence of which is logically 
dependent on the rules. Constitutive rules can be paraphrased as "X counts as Y in context 
C". A typical example is an introduction of a term used in a game., e.g., "A checkmate is 
made when the king is attacked in such a way that no move will leave it unattacked" (p. 
34f). Both rules can be expressed in BO-Logic. In BO-system for officers BBofficer, OBofficer , 
the FO-translation of sentence "Officers wear ties at dinner" is a member of OBofficer. 

Similarly, in BO-system of chess BBchess, OBchess , the FO-translation of sentence "A 
checkmate is made if and only if the king is attacked in such a way that no move will 
leave it unattacked" is a member of BBchess. 
 
2. Ontology for Actions and Agents 

Davidson developed an event ontology and considered events as First-Order objects as 
well as things. Furthermore, he interpreted actions as events that are intentional under 
some descriptions (Davidson 1980). Nakayama (2017b, 2019) extended this event-based 
semantics of Davidson and developed an axiomatic theory for Four-Dimensional Event 
Ontology (4EO). This theory is based on General Extensional Mereology (GEM) for 
(four-dimensionally extended) events. 4EO claims that everything is a four-dimensional 
object (4D-object). 

 
(4a) The universe is the maximal 4D-object. This means that any 4D-object is a part of 

the universe. 
(4b) An event is a 4D-bject. Thus, an action is also a 4D-object. 
(4c) An agent is a 4D-object. 
 
Atomic agents can share some parts of their mental states. We describe shared mental 

states of a group of atomic agents as follows. 
 

(5a) Let group G be the mereological sum of atomic agents A1, …, An. Let BDO(Ak) = 
BB(Ak), DB(Ak), OB(Ak) . 

(5b) [Shared belief]  is a shared belief in G def for all Ak in G,  BB(Ak). 
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(5c) [Shared desire belief]  is a shared desire belief in G def for all Ak in G,  

DB(Ak). 
(5d) [Shared obligation belief]  is a shared obligation belief in G def for all Ak in G, 

 OB(Ak). 
(5e) [Shared interpretation] All agents in G share interpretation of language L def 

every agent in G interprets all symbols in L in the same way. 
(5f) [Shared BO-system] BO-system BB, OB  is shared in G def all atomic agents in 

G share all beliefs in BB, all obligation beliefs in OB, and interpretation of all 
symbols in BB and OB. 

(5g) [Game players] If G is a group of players of a game that is defined by a BO-system, 
then this BO-system is shared in G and respected by all players in G. 

 
Now, the notion of extended agent can be specified as follows (Nakayama 2013). 
 
(6a) [Atomic agent] An atomic agent is an agent. Any spatial part of an atomic agent is 

no agent.  
(6b) [Agents and tools] Let temporal-part (x, t) denote the temporal part of object x in 

extended time t. Let A be an agent who uses thing B in t to perform an action. Then, 
the mereological sum temporal-part (A, t) + temporal-part (B, t) is an agent. 

(6c) [Collective action] For every agent A who is a part of G, if E is a collective action 
performed by G, then there is an action of A that is a part of E.  

(6d) If group G of agents performs a collective action in t, then temporal-part (G, t) is 
an agent. 

(6e) If an object satisfies neither (6a) nor (6b) nor (6d), then it is no agent. (Note that 
this definition of action is recursive.) 

(6f) [Extended agent] An agent that is not atomic is called an extended agent. 
 

The collectivity is created based on the ability of people to share parts of mental 
states and interpretation of a language. In general, an extended agent is more than the 
fusion of atomic agents, because it can contain several artifacts as its components (see 
(6b)). If B1 is the building of a factory, M1 is the machine in B1, and A1, … , An are 
workers in B1, and t denotes working hours, then temporal-part ((A1 + … + An) + M1), 
t) is an extended agent. The workers in B1 produce goods with M1 and this production 
is a collective action (see (6c)). It is a characteristic of our description of collective 
actions that it takes artifacts as well as humans into consideration. 
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3. Social Actions and Social Reality 

Max Weber thought that social actions of individuals construct the society. Thus, Weber 
characterized sociology as a science which attempts the interpretive understanding of 
social action to arrive at a casual explanation of its course and effects (Weber 1922: Sect. 
1). This proposal looks persuasive, but it is also true that the society supports social 
actions. This means that the society and social actions are interconnected. Searle pointed 
out that some action types and some mental states presuppose some social institutions. 
For example, you can desire to have much money and buy things with money, because 
there is a monetary system established in the society (Searle 2010: Chap. 6, Sect. 1). This 
monetary system can be interpreted as BO-system BBms, OBms  that is shared and 
respected by almost all members of this society. 

Many actions presuppose the existence of the society. For example, if you use a smart 
phone to play a game, you need a smart phone that is invented and produced in the past. 
Based on this invention and the spread of smart phones, the action type of using a smart 
phone is created. This type of creation presupposes shared beliefs and shared 
interpretations of terms for some artifacts. Another type of creation can be found in games. 
For example, hitting a home run is particular action type in a baseball game. This type of 
creation presupposes shared BO-system for a game and shared interpretation of terms in 
the BO-system. Additionally, playing a team game presupposes some shared desires 
among members of a team. These examples show that the existence of many current 
actions presupposes some current shared BO-systems and some collective actions in the 
past. 
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Measurement-Theoretic Remarks on
Reducibility of Decision-Theoretic Values of
Questions and Answers to Their Information

Values (Extended Abstract)

Satoru Suzuki

Faculty of Arts and Sciences, Komazawa University,
1-23-1, Komazawa, Setagaya-ku, Tokyo 154-8525, Japan

bxs05253@nifty.com

1 Motivation

The theory of questions and answers is one of the most popular topics in speech
act theory. According to Cross and Roelofsen [4], whether-questions can be clas-
sified into at least two categories. The first category is an yes/no question like
(1):

(1) Was there a quorum at the meeting?

(1) has the following two direct answers:

(1a) Yes. There was a quorum at the meeting.
(1b) No. There was not a quorum at the meeting.

(1) presupposes that the meeting took place. (1) also has a corrective answer:

(1c) The meeting did not take place.

Although (2) can be read as an yes/no question having two direct answers, it
also has a reading on which it presents the following three direct answers:

(2) Does Jones live in Italy, in Spain, or in Germany?

(2a) Jones lives in Italy.
(2b) Jones lives in Spain.
(2c) Jones lives in Germany.

(2) falls under the second category of whether-questions. (2) presupposes that
Jones lives in Italy, in Spain, or in Germany. (2) also has a corrective answer:

(2d) Jones does not live in Italy, in Spain, or in Germany.

Whether-questions have a finite number of direct answers, whereas which-
questions like (3) and (4) may have an indefinite or infinite number of direct
answers.
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2 S. Suzuki

(3) Which Cardinal was elected Pope in 2013?
(4) Who shot J.R.?

Belnap and Steel [1] refer to wether- and which-questions like (3) and (4) as
elementary questions. Hamblin [7] takes a question to denote, in a world w, the
set of all propositions corresponding to a possible answer to the question. A
fundamental problem is that Hamblin semantics does not specify what a pos-
sible answer is. Groenendijk and Stokhof [6] take a question to denote, in each
world, a single proposition corresponding to the true exhaustive answer to the
question in that world. What the true exhaustive answer to a question in a
given world is is much clear than what all the possible answers to that question
are. Then the meaning of a question can be identified with a set of mutually
exclusive and exhaustive propositions (i.e., partition) of the logical space. In this
paper, we would like to argue about the crossroads of the theory of questions
and answers, decision theory, and information theory in terms of measurement
theory (cf. Krantz et al. [8]). The aim of this paper is to remark, in terms of
such measurement-theoretic concepts as scale types, on the reducibility of the
decision-theoretic values of questions to the their information-theoretic values
on the basis of Luce [9]’s theorems. The selling point of this paper is not giv-
ing a new linguistic (empirical) analysis of questions and answers but giving a
new measurement-theoretic (conceptual) analysis of the decision-theoretic and
information-theoretic sides of questions and answers.

2 Decision-Theoretic and Information-Theoretic Values
of Questions and Answers

According to van Rooij [10, 11], the relevance of a question and its answers can
be determined in terms of how much it contributes to solving a decision problem
that can be modeled by a decision space (W,F , P, U). When a partition R is
given, decision-theoretic value DVR(B) of a proposition B with respect to R is
defined as follows:

Definition 1 (DVR(B)).

DVR(B) := max
U

∑
A∈R

P (A|B)U(A ∩B)−max
U

∑
A∈R

P (A)U(A).

The expected decision-theoretic value EDVR(Q) of a question (partition) Q with
respect to R is defined by DVR(B):

Definition 2 (EDVR(Q)).

EDVR(Q) :=
∑
B∈Q

P (B)DVR(B).

On the other hand, the relevance of a question and its answers can be analyzed
also in terms of information theory. The informational value IVR(A) of A ∈ F
with respect to a partition R:
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Measurement-Theoretic Remarks on Reducibility 3

Definition 3 (IVR(B)).

IVR(B) := H(R)−HB(R) =
∑
A∈R

P (A|B) logP (A|B)−
∑
A∈R

P (A) logP (A),

where HB(R) is the entropy of R with respect to the probability function condi-
tionalized on B.

The expected information-theoretic value EIVR(Q) of a question (partition) Q
with respect to R that is defined by IVR(B):

Definition 4 (EIVR(Q)).

EIVR(Q) :=
∑
B∈Q

P (B)IVR(B) =
∑
B∈Q

∑
A∈R

P (A ∩B) log
P (A ∩B)

P (A)P (B)
.

3 Reducibility: Properness, Locality, and Underlying
Context

In general, the decision-theoretic values of questions and answers do not agree
with their information-theoretic values. Then when the decision-theoretic values
of questions and answers can be reduced to their information-theoretic values?
We would like to consider this problem. When this problem is considered, such
properties of U as properness and locality are often focused. Properness is defined
as follows:

Definition 5 (Properness). U is a proper iff
∑

A∈R

P (A)·U(P,A) ≥
∑

A∈R

P (A)·

U(P ′, A) for any P and P ′.

Locality is defined as follows:

Definition 6 (Locality). U is local iff U is defined only by P (A)(P ′(A)) where
A ∈ R but not by P (P ′).

Fischer [5] proves the following theorem:

Fact 1 (Logarithmic Utility Function) If U is differentiable, proper and lo-
cal utility functions (scoring rules) for probability functions, and R has more than
two cells, then U(P (A)) = α logP (A) + γ, where α > 0.

From Fact 1, van Rooij [10, p. 395] deduces the following proposition:

Fact 2 (Reducibility) If U is differentiable, proper and local utility functions
(scoring rules) for probability functions, and R has more than two cells, and
moreover α = 1 and γ = 0 in U(P (A)) = α logP (A) + γ, then both DVR(A) =
IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR can be reduced to
(E)IVR.
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4 S. Suzuki

Although deducing itself the logarithmic utility functions from properness and
locality is clear, the statuses of these functions and conditions are not clear to us.
So we would like to consider these statuses in terms of comparing the logarithmic
utility functions with other proper utility functions. Besides the logarithmic
utility functions, there are at least two kinds of frequently-used proper utility
functions (scoring rules) for probability functions:

1. quadratic: U(P (A)) := 2P (A)−
∑
B∈R

P (B)2, and

2. spherical: U(P (A)) :=
P (A)√∑

B∈R

P (B)2
.

Both the quadratic and spherical utility functions are not local. Among these
three types of functions, the logarithmic utility functions only are both proper
and local. Which of these three utility functions should be chosen? Bickel [2]
criticizes the quadratic and spherical utility functions in the following two points:

1. The quadratic and spherical utility functions often result in extreme ranking
differences when compared to the logarithmic utility functions.

2. Because of nonlocality, the quadratic and spherical utility functions allow
for the undesirable possibility that one expert receives the highest utility
(score) when assigning to the observed proposition a probability lower than
the probabilities assigned by other experts.

On the other hand, Selten [12] criticizes the logarithmic utility functions in the
following two points:

1. Their resulting utility (score) is too sensitive to small mistakes for small
probabilities.

2. An expert’s utility (score) is −∞ when a proposition holds that she predicted
to be impossible. So the logarithmic utility functions are unbounded and
they need to be truncated, but it will be no longer be proper after such a
truncation.

According to Carvalho [3, p. 4], “the choice of the most appropriate proper
scoring rule is dependent on the desired properties, which in turn is dependent
on the underlying context.” Properness and locality can be considered to be
examples of “desired properties”. Because the statuses of the logarithmic utility
functions, properness and locality are not clear to us as we said before, we
would like to change our viewpoint from the relation between these functions and
conditions to the relation between these functions and the “underlying context”
to determine when U is a logarithmic function. Then the following problem
arises:

Problem 1 (Reducibility and Underlying Context) What is an underly-
ing context to determine when (E)DVR can be reduced to (E)IVR, that is, when
U is a logarithmic function and so both DVR(A) = IVR(A) and EDVR(Q) =
EIVR(Q) hold?

13



Measurement-Theoretic Remarks on Reducibility 5

4 Luce’s Theorems: Psychophysical Laws

Now we try to cope with Problem 1 in terms of such measurement-theoretic
concepts as scale types based on the class of admissible transformations:

Definition 7 (Scale Types). A scale is a triple 〈U,V, f〉 where U is an ob-
served relational structure that is qualitative, V is a numerical relational struc-
ture that is quantitative, and f is a homomorphism from U into V. A is the
domain of U and B is the domain of V. When the admissible transformations
are all the functions ϕ : f(A) → B, where f(A) is the range of f, of the
form ϕ(x) := αx;α > 0. ϕ is called a similarity transformation, and a scale
with the similarity transformations as its class of admissible transformations is
called a ratio scale. When the admissible transformations are all the functions
ϕ : f(A) → B of the form ϕ(x) := αx + β;α > 0, ϕ is called a positive affine
transformation, and a corresponding scale is called an interval scale.

Remark 1 (Ratio and Interval Scales) The indefinite integral of a ratio
scale is an interval scale.

Indeed the concept of (underlying) context is ambiguous. But when U := ψ(P ),
ψ can be considered to be an underlying context to connect P to U and to
determine when U is a logarithmic function and so both DVR(A) = IVR(A)
and EDVR(Q) = EIVR(Q) hold. Luce [9] proves the theorems on the types
of psychophysical laws that connect the physical scales to psychological scales
in terms of measurement theory. First, Luce proves the following theorem that
connects ratio scales as physical scales to ratio scales as psychological scales:

Fact 3 (From Ratio Scale to Ratio Scale) Suppose that f : A → IR+ and
g : A → IR+ are both ratio scales and that g(a) = ψ(f(a)) for any a ∈ A and
that ψ is continuous. Then ψ(x) = αxβ, where α > 0.

Second, Luce [9] proves the following theorem that connects ratio scales as phys-
ical scales to interval scales as psychological scales:

Fact 4 (From Ratio Scale to Interval Scale) Suppose that f : A → IR+ is
a ratio scale and g : A→ IR is an interval scale and that g(a) = ψ(f(a)) for any
a ∈ A and that ψ is continuous. Then ψ(x) = αxβ + γ or ψ(x) = α log x+ γ.

5 Reducibility and Scale Types

Luce proves Fact 4 independently of Fact 3. In addition, he proves Fact 4 as a
corollary of Fact 3 on the assumption that ψ is not only continuous but also
differentiable in such a way that since the indefinite integral of a ratio scale is
an interval scale, if f is considered to be a ratio scale and g is an interval scale,
then either ψ(x) = α

β+1x
β+1 + γ if β �= −1 or ψ(x) = α log x + γ if β = −1.

Facts 3 and 4 may be originally intended to determine the psychophysical laws
that connect the physical scales to psychological scales. But we can regard Luce’s

14



6 S. Suzuki

theorems as the theorems which have wider applicability in the sense that these
theorems can make clear connection between scales in general. Now we would
like to use these theorems in order to furnish a solution to Problem 1:

Proposition 1 (Reducibility and Scale Types). Suppose that a ratio scale
P (in a wide sense) is given, and that an underlying context ψ(x) := αxβ ;α > 0
is given connecting P to a ratio scale (stronger cardinal utility) U∗, and that
R has more than two cells. Then if β = −1 and the integral constant of∫
U∗(P )dP equals 0, then such interval scale (weaker cardinal utility) U as

U(P ) :=
∫
U∗(P )dP is a logarithmic function and, when DVR is defined by

U , both DVR(A) = IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR
can be reduced to (E)IVR, and if β �= −1, then U is no logarithmic function—
it may be quadratic or spherical function—and either DVR(A) = IVR(A) or
EDVR(Q) = EIVR(Q) does not always hold, that is, (E)DVR cannot be reduced
to (E)IVR.

Remark 2 (Solution to Problem 1) Proposition 1 states that such condi-
tions as especially the value of β (i.e., β = −1 or not) concerning the underlying
context ψ(x) := αxβ connecting a ratio scale P to a ratio scale U∗ determines
when the decision-theoretic value of questions and answers can be reduced to
their information-theoretic values, which furnishes a solution to Problem 1.
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A simple logic of the hide and seek game

Fenrong Liu

Tsinghua University

We discuss a simple logic to describe one of our favourite games from childhood,

hide and seek, and show how a simple addition of an equality constant to describe

the winning condition of the seeker makes our logic undecidable. There are certain

decidable fragments of first-order logic which behave in a similar fashion with respect

to such a language extension, and we add a new modal variant to that class. We discuss

the relative expressive power of the proposed logic in comparison to the standard modal

counterparts. We prove that the model checking problem for the resulting logic is P-

complete. In addition, by exploring the connection with related product logics, we gain

more insight towards having a better understanding of the subtleties of the proposed

framework. This is joint work with Dazhu Li, Sujata Ghosh and Yaxin Tu.
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Graph Games and Logic Design

Johan van Benthem

Amsterdam, Stanford and Tsinghua

Graph games model interesting social scenarios when normal behavior gets dis-

rupted, or (perhaps beneficially) nudged away from its ordinary course. At the same

time, these games offer interesting interfaces with old and new logics. In this survey

talk, I present some classical results on the sabotage game and its modal logic, then

move to a range of new results obtained recently by students, and I end with a general

discussion of the logic design/game design interface, including the pressing challenge

of bringing in more informational/epistemic aspects.

——————————-

Johan van Benthem & Fenrong Liu, 2019, Graph Games and Logic Design, Journal of

Tsinghua University (Philosophy and Social Sciences), 34:2, 131139.
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Inference as Belief Change

Jeremy Seligman

The University of Auckland

The narrative of inference is sequential. You have some information, which you

combine and transform in a series of cognitive acts until you arrive at a conclusion.

One, two and then three. At each step there is some change in your cognitive state.

I will explore the possibility that such changes are changes in belief, and discuss the

logic of this kind of belief change.
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Completeness of Common sense

Term-Sequnce-Deontic-Alethic Logic

Tomoyuki Yamada

Faculty ot Humanities and Human Sciences, Hokkaido University

The languages of propositional modal logics has been shown to be highly useful in

developing dynamic modal logics that deal with various speech acts. It is also clear,

however, that we need more expressive language if we wish to state, for example,

a general principle to the effect that if you promise to keep a person safe, you will

be committed to keep her safe. Its natural formalization may be something like the

following:

∀x∀y[Promise(x, y,Safe(y)]O(x, y, x)Safe(y),

where [Promise(x, y, ϕ)] means whenever an act of promising to see to it that ϕ is

performed by x addressing y, x will be committed to see to it that ϕ in the resulting

situation and O(x, y, z)ϕ means that it is obligatory for x with respect to y by the name

of z to see to it that ϕ. This talk presents a static base logic maths fCTS DAL (Com-

mon sense Term-Sequnce-Deontic-Alethic Logic) that we hope can be extended in to a

dynamic language in which we can state things like the one above. We define a logic,

maths fCTS DAL, in which we can state, fo example,

∀x∀y(Parent(x, y) ∧ Young(y))→ O(x, y, x)Safe(y),

which means that parents are committed to see to it that their young children are safe,

and prove its completeness. This presentation is based on joint work with Katsuhiko

Sano and Takahiro Sawasaki.
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1 Introduction
This paper establishes the Craig interpolation for a multi-succedent sequent calculus for a combination

of intuitionistic and classical propositional logic, denoted by G(C + J). The calculus was provided

in [16] and is based on the semantics offered in [4, 5]. The logic, called C+ J, has two implications:

intuitionistic and classical one1. They are interpreted in the Kripke semantics as follows (cf. [4, 5]):

w |=M A→i B iff for all v ∈W, (wRv and v |=M A jointly imply v |=M B),
w |=M A→c B iff w |=M A implies w |=M B,

where M is an intuitionistic Kripke model, w is a possible world in M , and R is a preorder equipped in

M . However this semantic treatment breaks one feature of intuitionistic logic called heredity, which is

defined as: w |= A and wRv jointly imply v |= A for all Kripke models M and all states w and v in M .

It is a well-known fact that this feature corresponds to an intuitionistically valid formulaA→i(B→iA).
Therefore, the formula is not valid in the Kripke semantics of C+ J. In order to avoid the formula being

derivable in G(C+ J), the right rule for the intuitionistic implication should be restricted as follows:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i).

The resulting calculus is sound and complete and a conservative extension of both an intuitionistic and

a classical propositional sequent calculus (see [16]).

It is well-known that classical propositional logic and intuitionistic propositional logic enjoy the

Craig interpolation theorem:

IfA→B is derivable, then there exists a formula C such that both ⇒ A→C and ⇒ C→B
are also derivable and that Prop(C) ⊆ Prop(A) ∩ Prop(B),

where Prop(D) denotes the set of all propositional variables in a formula D. The theorem can be

shown in terms of a classical sequent calculus LK by Maehara’s method in [9]. In multi-succedent

intuitionistic sequent calculus mLJ, the theorem can also be shown, though some modification of the

ways is needed, as is noted in [10]. Since C+ J contains the two kinds of implication, the two types of

Craig interpolation theorem can be considered in G(C+ J).

1In addition to C+ J, other attempts to combine intuitionistic and classical logic are displayed in [1, 2, 3, 6, 7, 11, 12, 13, 14].
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2 Syntax, Kripke Semantics and Sequent Calculus

2.1 Syntax and Kripke Semantics
This section reviews the syntax and the Kripke semantics of C+ J. The syntax is defined in [16], and

the Kripke semantics is based on the ones in [4, 5]. The syntax L consists of a countably infinite set Prop
of propositional variables and the following logical connectives: falsum ⊥, disjunction ∨, conjunction

∧, intuitionistic implication →i, and classical implication →c. The set Form of all formulas in our

syntax is defined inductively as follows:

A ::= p | ⊥ |A ∨A |A ∧A |A→i A |A→c A,

where p ∈ Prop. We define � := ⊥→i ⊥, ¬cA := A→c ⊥ and ¬iA := A→i ⊥.

Let us move to the semantics for the syntax L.

Definition 1. A model is a tuple M = (W,R, V ) where

• W is a non-empty set of possible worlds,

• R is a preorder on W , i.e., R satisfies reflexivity and transitivity,

• V : Prop → P(W ) is a valuation function satisfying the following heredity condition: w ∈ V (p)
and wRv jointly imply v ∈ V (p) for all worlds w, v ∈W .

Definition 2. Given a modelM = (W,R, V ), a world w ∈W and a formulaA, the satisfaction relation
w |=M A is inductively defined as follows:

w |=M p iff w ∈ V (p),
w �|=M ⊥,
w |=M A ∧B iff w |=M A and w |=M B,
w |=M A ∨B iff w |=M A or w |=M B,
w |=M A→i B iff for all v ∈W, (wRv and v |=M A jointly imply v |=M B).
w |=M A→c B iff w |=M A implies w |=M B.

Let us say that a formula A is a semantic consequence of a set of formulas Γ, represented as Γ |= A, if

w |=M C for any formula C ∈ Γ, then w |=M A for all models M = (W,R, V ) and all worlds w ∈W .

We use Γ |= Δ if Γ |= A for some formula A ∈ Δ. We say that A is valid if ∅ |= A holds. We say a

formula A satisfies heredity if the following holds: w |= A and wRv jointly imply v |= A for all Kripke

models M and all states w and v in M .

Proposition 1. A formula ¬cp does not satisfy heredity.

Proposition 2. Neither ¬cp→i (�→i ¬cp) nor ¬cp→c (�→i ¬cp) is valid.

Proposition 2 implies that an intuitionistic tautology A→i (B →i A), which is known for the corre-

spondence to heredity in intuitionistic logic, is no longer valid.

2.2 Multi-succedent sequent calculus G(C+ J)

This section reviews the sequent calculus G(C + J) provided in [16]. In what follows, we use the

ordinary notion of multi-succedent sequent. A sequent is a pair of finite multisets denoted by Γ ⇒ Δ,

which is read as “if all formulas in Γ hold then some formulas in Δ hold.” Table 1 provides our multi-

succedent sequent calculus G(C + J), where the notion of derivability is defined as an existence of a

2
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Table 1: Sequent Calculus G(C+ J)
Axioms

A⇒ A
(Id) ⊥ ⇒ (⊥)

Structural Rules

Γ ⇒ Δ
Γ ⇒ Δ, A

(⇒ w) Γ ⇒ Δ
A,Γ ⇒ Δ

(w ⇒)
Γ ⇒ Δ, A,A

Γ ⇒ Δ, A
(⇒ c)

A,A,Γ ⇒ Δ

A,Γ ⇒ Δ
(c⇒)

Γ ⇒ Δ, A A,Π ⇒ Σ

Γ,Π ⇒ Δ,Σ
(Cut)

Propositional Logical Rules

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i)

Γ1 ⇒ Δ1, A B,Γ2 ⇒ Δ2

A→i B,Γ1,Γ2 ⇒ Δ1,Δ2
(→i ⇒)

A,Γ ⇒ Δ, B

Γ ⇒ Δ, A→c B
(⇒ →c)

Γ1 ⇒ Δ1, A B,Γ2 ⇒ Δ2

A→c B,Γ1,Γ2 ⇒ Δ1,Δ2
(→c ⇒)

Γ ⇒ Δ, A Γ ⇒ Δ, B

Γ ⇒ Δ, A ∧B (⇒ ∧) A,Γ ⇒ Δ

A ∧B,Γ ⇒ Δ
(∧ ⇒1)

B,Γ ⇒ Δ

A ∧B,Γ ⇒ Δ
(∧ ⇒2)

Γ ⇒ Δ, A

Γ ⇒ Δ, A ∨B (⇒ ∨1)
Γ ⇒ Δ, B

Γ ⇒ Δ, A ∨B (⇒ ∨2)
A,Γ ⇒ Δ B,Γ ⇒ Δ

A ∨B,Γ ⇒ Δ
(∨ ⇒)

finite tree, which is called a derivation, generated by inference rules of Table 1 from initial sequents

(Id) and (⊥) of Table 1.

Our basic strategy of constructing G(C + J) is to add classical implication to the propositional

fragment of multi-succedent sequent calculus mLJ of intuitionistic propositional logic, proposed by

Maehara [8]. However, if the ordinary left and right rules of classical implication were added, the

soundness of the resulting calculus would fail, because a formula ¬cp→c (� →i ¬cp), which is not

valid by Proposition 2, would be derivable. This is the reason why the original right rule

A,Γ ⇒ B

Γ ⇒ A→i B

of intuitionistic implication of mLJ is restricted to the right rule given in Table 1. Based on the abbre-

viation defined in Section 2.1, the following rules for negations are obtained respectively:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒
C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ ¬iA

(⇒ ¬i)
Γ ⇒ Δ, A

¬iA,Γ ⇒ Δ
(¬i ⇒)

Γ, A⇒ Δ

Γ ⇒ ¬cA,Δ
(⇒ ¬c)

Γ ⇒ Δ, A

¬cA,Γ ⇒ Δ
(¬c ⇒)

.

Proposition 3. For any Γ ∪Δ ⊆ Form, Γ ⇒ Δ is derivable in G(C+ J) iff Γ |= Δ holds.

Proposition 4. If Γ ⇒ Δ is derivable in G(C + J), then Γ ⇒ Δ is derivable in G−(C + J), where

G−(C+ J) is the calculus obtained by removing the rule (Cut) from G(C+ J).

By Proposition 4, the subformula property is obtained, which ensures the calculus is a conservative

extension of both intuitionistic and classical propositional logic.

3
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3 Craig Interpolation
In this section, we establishes two types of Craig interpolation theorem for G(C + J), based on Mae-

hara’s partition argument in [9]. This argument is originally for classical sequent calculus LK, and is

dependent on the fact that the cut elimination holds in the calculus. Since cut elimination holds also in

G(C + J), as is guaranteed by Proposition 4, this method can be employed. In the following part of

this section, Prop(D) denotes the set of all propositional variables in a formula D. And if Γ is a finite

multiset of formulas, we define Prop(Γ) =
⋃{Prop(D) | D ∈ Γ}. Especially, we have Prop(⊥) = ∅.

We call 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 a partition of a sequent Γ ⇒ Δ, if Γ is Γ1,Γ2 and Δ is Δ1,Δ2. Let us

say that C is an interpolant of 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 if Γ1 ⇒ Δ1, C and C,Γ2 ⇒ Δ2 are derivable

and Prop(C) ⊆ Prop(Γ1,Δ1) ∩ Prop(Γ2,Δ2).
Although the main idea of giving G(C+J) is adding classical implication to intuitionistic logic, our

proof is similar to that in classical logic. For establishing the Craig interpolation theorem for mLJ, we

cannot employ the notion of partition of the form 〈(Γ1 : Δ1); (Γ2 : Δ2)〉. This is because we cannot find

an interpolant for 〈(∅ : A); (A : ∅)〉 as noted in [10]. Therefore, in order to show the theorem for mLJ,

the form of a partition should be restricted to 〈(Γ1 : ∅); (Γ2 : Δ)〉. However, this restriction makes it

possible to show neither of the two types of theorem in G(C + J). Considering this situation, it seems

difficult to establish the theorem for G(C+J). However, the classical negation (or implication) enables

us to use partitions of the form 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 without any restriction to calculate an interpolant

by Maehara method. This fact about the way of showing Craig interpolation theorem implies that C+ J
can be regarded as the logic obtained by adding the special (intuitionistic) implication to classical logic2.

Lemma 1. Suppose that Γ ⇒ Δ is derivable in G(C + J). Then for any partition 〈(Γ1 : Δ1); (Γ2 :
Δ2)〉 of the sequent, there exits an interpolant C in G(C + J), i.e., such that both Γ1 ⇒ Δ1, C and

C,Γ2 ⇒ Δ2 are also derivable in G(C+ J), and Prop(C) ⊆ Prop(Γ1,Δ1) ∩ Prop(Γ2,Δ2).

With Lemma 1, which is the core of the proof, we can easily show the following two types of Craig

interpolation theorem.

Theorem 1. (Intuitionistic Craig Interpolation Theorem of G(C + J)). If ⇒ A→i B is derivable in

G(C + J), then there exists a formula C such that ⇒ A→i C and ⇒ C →i B are also derivable in

G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

Theorem 2. (Classical Craig Interpolation Theorem of G(C + J)). If ⇒ A →c B is derivable in

G(C + J), then there exists a formula C such that ⇒ A→c C and ⇒ C →c B are also derivable in

G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

4 Further Direction
In [15], the first-order expansion G(FOC+ J) of G(C + J) can be given by adding classical univer-
sal quantifier to first-order multi-succedent intuitionistic sequent calculus mLJ, although the similar
restriction on the right rule for the intuitionistic universal quantifier is needed. Whether Craig interpo-
lation holds in this expansion is an open question, which deserves being inquired.
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Quantum logic (QL) has been studied to handle strange propositions of
quantum physics. In particular, logic based on orthomodular lattices, namely,
orthomodular logic (OML), has been studied since 1936, proposed by Birkhoff
and Von Neumann [10]. An orthomodular lattice is related to the closed
subspaces of a Hilbert space, which is a state space of a particle in quantum
physics. Instead of these lattices, the Kripke model (possible world model)
of OML can be used, which is called the orthomodular-model (OM-model)
[11] [12]. Intuitively, each possible world of an OM-model expresses a one-
dimensional subspace of a Hilbert space, corresponding to a quantum state.

In quantum mechanics, due to the uncertainty principle, exact values can-
not be simultaneously obtained for a specific set of physical quantities (for
example, momentum and position along an axis). This statistical property
is the nature of the states of the object and exist independently of an ex-
perimenter’s knowledge. OML handles the most basic part of this strange
nature of states.

To treat an agent’s knowledge in quantum mechanics, some studies com-
bine epistemic logic (EL) with QL. EL is a field of modal logic that treats
the proposition of an agent’s knowledge. In the Kripke model of EL, the
indistinguishability of states is used to express knowledges. That is, if a
formula φ is true at all states that are indistinguishable from the current
state for agent i, then agent i knows that φ is true. Furthermore, dynamic
EL (DEL) has been studied to handle the transitions of knowledge [15]. In
general, public announcement logic (PAL) is treated as the most basic and
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simple logic in DEL. Basic PAL includes only two types of modal symbols:
the symbols for knowledge Ki of individual agents and the symbol [ ] for
public announcements. [φ]ψ can be read as After a public announcement
φ, ψ is true.

Ref [8] and [9] can be cited as one of the studies of logic that deal with
the concept of knowledge with quantum physics. In these studies, the models
which incorporate specific quantum information concepts were used. Ref [2]
and [3] can be cited as the studies of knowledge with more general concepts
of quantum physics. In these studies, similar to EL, knowledge was expressed
using the indistinguishability of states.

To discuss the general change of knowledges due to the procurement of
informations, other concepts have to be introduced and the field of dynamic
epistemic QL (DEQL) has to be developed. In [4], quantum test frame is
introduced as a part of the study of the dynamic logic of test (DLT). DLT
is a logic for dealing with general changes in knowledge due to information
obtained by testing. Quantum test frame is based on the frame for DLT
and the frame for dynamic QL (DQL) [5] [6] [7]. DQL uses modal symbols
for several types of transitions of quantum states, such as unitary evolutions
and projections. An important aspect of quantum physics is the change of
state due to measurement. In quantum physics, when a physical quantity
is observed, the state is projected to an eigenstate of the physical quantity.
That is, the state of the particle itself changes depending on the obtained
information. In (classical) EL, if x(φ)y, then x = y; where x and y denote
states and (φ) is the relation for information φ. Reflecting the nature of
quantum physics, in quantum test frame, this property is not true [5] [6] [7].

As mentioned above, the transition of knowledge in quantum mechanics
has been analyzed in some directions. However, some problems remain.

1. These models in previous studies are little complicated because these
models introduce almost every modal element related to quantum me-
chanics. Such a model is also needed, but a somewhat simple and
abstracted model that leaves only the important notions is also useful
to analyze specific feature of knowledge in quantum mechanics.

2. As the models and symbols are complicated, constructing a deduction
system for this types of logic is somewhat complicated task because we
have to deal with the mutual consistency of many conditions. Actually,
deduction systems for DEQL have not been analyzed much.
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Therefore, in this study, as a basis for solving these problems, we construct
new logic and models for the transition of knowledge in quantum mechanics
that is simpler than previous studies, while retaining the essence of these
studies. Furthermore, we construct a deduction system that holds soundness
and completeness for those new models. Because of these purposes, herein,
we mainly focus on mathematical and logical analysis, rather than quantum
mechanical analysis.

We construct dynamic epistemic orthomodular logic (DEOML) by com-
bining the frames and models of OML and PAL, and we simply use a combi-
nation of logical symbols for OML and PAL. The meaning of [φ] in DEOML
is different from that in PAL. In DEOML( and in quantum test frames), [φ]
denotes the action that the agent obtains the information φ by observing a
state of the particle. However, they are the same in terms of obtaining
the information that φ is true. Therefore, in fact, the logical nature for this
symbol are almost the same in each logic. Moreover, due to the simplicity of
DEOML, this similarity is used to prove useful theorem (which is described
in last paragraph) similar to PAL, which is difficult to established in the
models in previous studies.

OML is adopted instead of DQL for the foundation of logic because of
the following advantages.

1. Although OML is not a modal logic, OM-models implicitly include the
concept of the modality of projection as binary relations that satis-
fies some important conditions [17]. Therefore, OML can handle the
concept of projection while being a simpler model than DQL, which
include the notion of of projections explicitly.

2. OML does not include the other dynamic concepts of quantum mechan-
ics, such as unitary evolutions. However, the most important strange
properties of the agent’s knowledge that appear in quantum mechanics
are related to projective observations. Therefore, the important prop-
erties can be analyzed as long as the concept of projection is included
in the logic.

3. Different from DQL, deduction systems for OML are well argued in
previous studies [13] [14] [16] [18] [19], and we can use them directly to
construct a deduction system for DEOML.

We construct a sequent calculus type deduction system for DEOML and
prove the soundness and completeness theorem with respect to new models.
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Sequent calculus is suitable for this study because it is compatible with OML
and modal logics [13] [18] [19]. Hilbert-style systems for OML have also
been studied [14] [16]. However, they contain unique symbols for creating
the Hilbert-style system, which are not suitable for combination with other
(modal) symbols.

In this new logic, two types of formulae are used: a quantum formula
(q-formula), and a general formula (g-formula).

q-formula A ::= p | ⊥ |∼ A | A∧A
g-formula φ ::= A | ¬φ | φ∧φ | Kφ | [A]φ
The q-formulae are included in g-formulae. The q-formulae are correspond to
the propositions in OML. That is, q-formulae are used to express the propo-
sitions of quantum mechanics. g-formulae are used to express modal notions
including knowledge and change of informations. We use the definition that
only q-formulae can be placed in the modal symbol [ ] because we deal with
the situation where the agent gets information about the particles in an ex-
periment. By using this condition, the same concept of projections [ ] defined
in advanced OM-model [17] can be used.

In this study, similar to [1] [4], we focus on the situations where only one
agent is present. The main reason for this restriction is that models for QL
which are currently configured are not very suitable for dealing with product
Hilbert spaces, which represent state spaces of multiple particles and agents.
Therefore, a study of logic that includes more than one agent or more than
one particle in binary relational model is somehow different from this study.

It is shown that even with these restricted definition, important parts
of knowledge in quantum mechanics still can be expressed. For example,
Kp → [A]Kp is valid in PAL but not always valid in models of DEOML. In-
tuitively, this is because an announcement may change an agent’s knowledge
but not change the environment in PAL. In contrast, as mentioned earlier,
in quantum mechanics, when we obtain information from the environment
(particles), the state of the environment may change because of projections.

The main contributions of this study are as follows.

A novel model for DEQL that can analyze the transitions of knowledge is
constructed, and it is simpler than the models in previous studies. The
method of configuration of the model is also completely different from
the previous studies.
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Using the new model, we construct a new logic DEOML.

Some similarity and differences between PAL and DEOML from the mathe-
matical logic perspective are analyzed. That is, following formulae are
valid in DEOML.

[A]B ↔∼ A � (A ∧B))

[A](φ ∧ ψ) ↔ ([A]φ ∧ [A]ψ)

[A]¬φ ↔ (¬ ∼ A → ¬[A]φ)
[A]Kφ ↔ (¬ ∼ A → K[A]φ)

Deduction system for DEOML, which is sound and complete with respect
to these new models are established. This results of deduction system
for DEQL is completely new.
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On the Degrees of Ignorance:

via Epistemic Logic and μ-Calculus

Leonardo Pacheco and Kazuyuki Tanaka

January 30, 2022

Epistemic Logic normally discourses on knowledge, belief, and related con-
cepts. We here study ignorance instead. With the help of the μ-calculus, we
analyze the degrees of ignorance in which an agent doesn’t know whether or
not a given proposition is true. Building on the study by Stalnaker [14], we
argue that logics “closer” to S4.2 allow greater degrees of ignorance, compared
to logics “closer” to S5.

We consider Epistemic Logic with the modal operators K (for knowledge)
and B (for belief). We will focus on the case where there is only one agent,
following Hintikka [7], Lenzen [8], and Stalnaker [14]. We suppose that K
satisfies (at least) S4 and B satisfies KD45. By belief, we mean strong belief, and
suppose that the agent’s beliefs has no contradiction and they have introspection
about their own beliefs:

Kϕ→ Bϕ,

Bϕ→ KBϕ, and

¬Bϕ→ K¬Bϕ.
Lenzen [8] showed that the interaction axioms above imply that Bϕ ↔ K̂Kϕ,
that is, belief can be defined by knowledge. In practice, we consider B as a
defined modality. Lenzen’s proof also implies that K satisfies S4.2.

The concept of ignorance was also studied by van der Hoek and Lomuscio
[6]. They defined a modal operator for ignorance by

Iϕ :↔ ¬Kϕ ∧ ¬K¬ϕ.
They also define a logic for ignorance Ig and prove that it is sound and complete
over the class of all frames. Fine [5] studied the nth-order ignorance Inϕ, where
In+1ϕ :↔ I(Inϕ) and I0ϕ :↔ ϕ. In particular, it is shown that I2ϕ is equivalent
to the so-called Rumsfeld ignorance “the unknown unknown”, Iϕ∧¬KIϕ. Fine
also showed that, for any ϕ, ¬KI2ϕ is valid on any frame of S4.2. Therefore, the
knowledge of second-order ignorance is unobtainable. Note that the ignorance
modality I is a particular case of the contingency modality ∇ (see Montgomery
and Routley [10]). ∇ is defined by

∇ϕ :↔ ♦ϕ ∧ ♦¬ϕ.
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We build on Stalnaker’s [14] analysis and consider the logics S4.2, S4.3,
S4.3.2, S4.4, and S5 for knowledge. They are defined using the axioms in Table
1 with the necessitation rule. Aucher [2] characterized these logics by axioms
relating knowledge and belief/conditional belief similar to Lenzen’s characteri-
zation of S4.2.

Axiom Name Axiom Frame conditions
K K(ϕ→ ψ) → (Kϕ→ Kψ) (no condition)

D Kϕ→ K̂ϕ Serial
T Kϕ→ ϕ Reflexive
4 Kϕ→ KKϕ Transitive

5 K̂ϕ→ KK̂ϕ Euclidean

.2 K̂Kϕ→ KK̂ϕ Convergent

.3 K(Kϕ→ ψ) ∨K(Kψ → ϕ) Weakly Connected

.3.2 (K̂ϕ ∧ K̂Kψ) → K(K̂ϕ ∨ ψ) Semi-Euclidean

.4 (ϕ ∧ K̂Kϕ) → Kϕ (no particular name)

Table 1: Modal axioms for K.

The (modal) μ-calculus is obtained by adding to modal logic the fixed-point
operators μ and ν, for least and greatest fixed-points. The μ-formulas are gen-
erated by the grammar

ϕ := P | ¬P | X | ϕ ∧ ϕ | Kϕ | μX.ϕ | νX.ϕ.
We denote the dual operators of K and B by K̂ and B̂. For reasons that will
become clear later, we consider only alternation-free formulas, that is, formulas
with no nested alternation of μ and ν operators. More rigorously, a μ-formula
is alternation-free if it has no subformula of the form μX.ϕ (or νX.ϕ) such that
ϕ has a subformula νY.ψ (or μY.ψ) with a free occurrence of X in ψ.

The relational semantics for the μ-calculus is defined as follows. Given a
model M and a μ-formula ϕ, we will define ‖ϕ‖M to be the set of worlds w
where ϕ holds. Propositional operators and modal operators are treated as
usual. For fixed-point operators, letting Γϕ(X) = ‖ϕ(X)‖M , we have

‖μX.ϕ(X)‖M is the least fixed point of Γϕ, and

‖νX.ϕ(X)‖M is the greatest fixed point of Γϕ.

For an example of the use of fixed-point operators, suppose we have modal-
ity E for “everyone knows”. Then a formula ϕ is common knowledge iff the
following formula holds:

νX.(ϕ ∧ EX).

That is, ϕ is common knowledge iff it is true, everybody knows that ϕ is true,
everybody knows that “everybody knows that ϕ is true”, and so on.

The operators μ and ν induce a (syntactical) hierarchy of the μ-formulas,
measuring the entanglement of least and greatest fixed-point operators. Brad-
field [4] showed that, in general, the hierarchy is strict: for all natural number
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n there is a formula with alternation depth n+1 which is not equivalent to any
formula of alteration depth n. But this strictness may fail in a restricted class
of models. In fact, Alberucci and Facchini [1] showed that on a frame satisfy-
ing S4, the hierarchy collapses to its alternation-free fragment: every μ-formula
is equivalent to an alternation-free μ-formula. This justifies our restriction to
alternation-free formulas in the definition of our μ-calculus. They also showed
that the hierarchy collapses to modal logic on frames of S5: every μ-formula is
equivalent to a modal formula. Also note that we can define a weak alterna-
tion hierarchy on the alternation-free fragment. The authors have shown the
strictness of the weak alternation hierarchy on recursive frames [11].

In [12], the authors show that the alternation hierarchy collapses to its
alternation-free fragment over frames of

S4.2 and S4.3;

and collapses to modal logic over frames of

S4.3.2, S4.4 and KD45.

Therefore there must be an (alternation-free) formula ϕ which is not equivalent
to any modal formula over S4.2 and S4.3; but is equivalent to a modal formula
over S4.3.2, S4.4 and KD45. While this abstract uses only relational seman-
tics, the collapses of the alternation hierarchy can be transferred to topological
semantics by a result of Baltag et al. [3].

We analyze a formula which is not equivalent to any modal formula over
S4.2 and S4.3. Let ϕ be any μ-formula, and define

αϕ(X) := K̂(ϕ ∧X) ∧ K̂(¬ϕ ∧X).

We study α∞
ϕ := νX.αϕ and its approximants α1

ϕ := αϕ(T ), α
n+1
ϕ := αϕ(α

n
ϕ);

they will be used to measure the agent’s degree of ignorance with respect to
ϕ. Each αi

ϕ will represent a degree of ignorance. Over S4.2, any degree implies
the weaker degrees but the converse may not hold. That is, if i, j ∈ N ∪ {∞}
and i < j, then αj

ϕ implies αi
ϕ; and the converse doesn’t hold as αi

ϕ ∧ ¬αj
ϕ is

satisfiable. Therefore we have, in general, infinitely many degrees of ignorance.
Our first degree of ignorance α1

ϕ is equivalent to Iϕ, and all the αi
ϕ can be

thought of as generalizations of Iϕ.
Van der Hoek and Lomuscio [6] state that the ignorance modality I is not

intended to capture degrees of ignorance, while our αi
ϕ’s are intended to do so.

Furthermore, Kαi
ϕ is satisfiable for any i ∈ N ∪ {∞}. Therefore the αi

ϕ are
different from second-order ignorance I2ϕ, and not obtainable by iterations of
I.

If we change our settings, we may have finitely many degrees of ignorance.
Consider S4.4, the logic of knowledge as true belief. We can show here that
α1
ϕ∧¬α2

ϕ is equivalent to the agent having a false belief and that α2
ϕ is equivalent

to α∞
ϕ . That is, we have only two non-equivalent degrees of ignorance: α1

ϕ, where
the agent’s belief is false; and α2

ϕ, where the agent believes neither ϕ nor ¬ϕ.
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The same analysis holds for S4.3.2, which has the same two degrees. This logic
is used, for example, in [13].

In S5, the standard logic for multi-agent epistemic logic, we have only one
degree of ignorance. In this setting, α1

ϕ is equivalent to α∞
ϕ . We also have that

belief is equivalent to knowledge, Bϕ↔ Kϕ, so the agent has no wrong beliefs,
and being ignorant of ϕ also means that they believe neither ϕ nor ¬ϕ.

Now consider the interpretation of αi
ϕ∧¬αi+1

ϕ over S4.2 and S4.3. S4.2 is the
logic of knowledge according to Lenzen [8] and Stalnaker [14]. S4.3 is Lehrer and
Paxon’s undefeated justified true belief [9]. Here, α1

ϕ ∧¬α2
ϕ is equivalent to the

agent’s belief being false and the agent knowing whether ϕ holds in every world
other than the real world. Likewise, α2

ϕ∧¬α3
ϕ holds exactly when the agent has

a true belief but considers it possible that their belief is false. Symbolically,

α2
ϕ ∧ ¬α3

ϕ ≡ [ϕ ∧Bϕ ∧ K̂(¬ϕ ∧Bϕ)] ∨ [¬ϕ ∧B¬ϕ ∧ K̂(ϕ ∧B¬ϕ)].

This analysis can be extended to other αi
ϕ ∧ ¬αi+1

ϕ to show that each degree of
ignorance expresses a higher level of the agent’s self-doubt.

Still in S4.2 and S4.3, note that, for n ∈ N, αn
ϕ implies the agent has a belief

(which may be true or false) and the agent not having a belief implies α∞
ϕ . In

other words, having no belief implies a high degree of ignorance, but a high
degree of ignorance does not deny the agent having a belief.

From the point of view of our degrees of ignorance, S4.3 and S4.3.2 are very
different: S4.3 has infinitely many degrees of ignorance; while S4.3.2 has only
two degrees. This contrasts with Stalnaker’s critics of S4.3 and S4.3.2, which
argues that in both logics false belief can deny knowledge: in S4.3 a false belief
can deny some knowledge the agent may be justified in having; and in S4.3.2 a
false belief denies all non-trivial knowledge.

At last, we can do a similar analysis to belief, using

δϕ(X) := B̂(ϕ ∧X) ∧ B̂(¬ϕ ∧X),

a belief variant of αϕ(X). Define δ1ϕ := δϕ(�), δn+1
ϕ := δϕ(δ

n
ϕ) and δ∞ =

νX.δ(X). Then, for i ∈ N ∪ {∞}, δ1ϕ is equivalent to δiϕ over KD45, similar to
the case where knowledge satisfies S5. Therefore we can only define one degree
of disbelief by our approach.
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The Creation and Change of Social Networks

Sonja Smets

University of Amsterdam

Recently, epistemic-social phenomena have received more attention from the logic

community, analyzing peer pressure, studying informational cascades, inspecting priority-

based peer influence, modeling diffusion and prediction, and examining reflective so-

cial influence. In this presentation, I will contribute to this line of work and focus in

particular on the logical features of social group creation. I pay attention to the mech-

anisms which indicate when agents can form a team based on the correspondence in

their set of features (behavior, opinions, etc.). Our basic approach uses a semi-metric

on the set of agents, which is used to construct a network topology. This structure is

then extended with epistemic features to represent the agents’ epistemic states, allow-

ing us to explore group-creation alternatives where what matters is not only the agent’s

differences but also what they know about them. The logical settings in this work make

use of the techniques of dynamic epistemic logic to represent group-creation actions,

to define new languages in order to describe their effects, and to provide sound and

complete axiom systems. This talk is based on joint work with Fernando Velazquez

Quesada.
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Learning what Others Know

Alexandru Baltag

University of Amsterdam

I present recent work on modelling scenarios in which agents are given (or gain)

access to all the relevant information possessed by some other agents (including infor-

mation of a non-propositional nature, such as data, passwords etc). Modelling such

scenarios requires us to extend the framework of epistemic logics to one in which we

abstract away from specific announcements. In order to do this, I introduce a general

framework for such informational events, that subsumes actions such as sharing all

you know with a group or individual, giving one access to some folder or database, ex-

changing all relevant information within a closed subgroup, hacking a database without

the owners knowledge, etc. We formalize their effect, i.e. we express the state of affairs

in which one agent (or group) has epistemic superiority over another agent/group, us-

ing comparative epistemic assertions (the extend to groups the individual comparative

formulas considered in [5]). Another ingredient is a new modal operator for common

distributed knowledge, that combines features of both common knowledge and dis-

tributed knowledge, and characterizes situations in which common knowledge can be

gained in a larger group of agents (formed of a number of subgroups) by communica-

tion only within each of the subgroups. This is joint work with Sonja Smets [1], though

I position it in the context of other related work [2-8].
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