
Proceedings of
SOCREAL2022

6th International Workshop
on Philosophy and Logic

of Social Reality

28 February – 1 March, 2022, On-Line

Keynote Lectures
and Accepted Papers

Ed. by Tomoyuki Yamada
Faculty of Humanities and Human Sciences

Hokkaido University



About SOCREAL2022

Since the last years of the 20th century, a number of attempts have been made in order to
model various aspects of social interaction among agents including individual agents,
organizations, and individuals representing organizations. The aim of SOCREAL Work-
shop is to bring together researchers working on diverse aspects of such interaction in
logic, philosophy, ethics, computer science, cognitive science and related fields in order
to share issues, ideas, techniques, and results.

The earlier editions of SOCREAL Workshop were held in March 2007, March
2010, October 2013, October 2016, and November 2022. Building upon the success
of these editions, its 6th edition was held from 28 February till 1 March 2022 under
the auspices of Philosophy and Ethics Laboratory at Faculty of Humanities and Human
Sciences, Hokkaido University, CAEP (Center for Applied Ethics and Philosophy) at
Faculty of Humanities and Human Sciences, Hokkaido University, and LOG-UCI (An
interdisciplinary study of the logical dynamics of the interaction between utterances
and social contexts), a research project funded by JSPS (JSPS KAKENHI Grant Num-
ber JP 17H02258).

About this booklet

This booklet includes all the abstracts and two slides of the invited and contributed
papers presented in SOCREAL 2022. Contributed papers are selected on the basis
of the reviews of the sbmitted abstracts. We are greatful to the members of Program
Committee for their excellent reviews.

Committees

Program Committee

Thomas Ågotnes (University of Bergen, Norway, and Southwest University, China)
Alexandru Baltag (University of Amsterdam, The Netherlands)
Johan van Benthem (Stanford University, USA and Tsinghua University, China)
Jose Carmo (Universidade da Madeira, Portugal)
Mamoru Kaneko (Tsukuba University, Japan)
Fenrong Liu (Tsinghua University, China)
Yasuo Nakayama (Osaka University, Japan)
Manuel Rebuschi (Universit de Lorraine, France)
Katsuhiko Sano (Hokkaido University, Japan)
Jeremy Seligman (The University of Auckland, New Zealand)
Sonja Smets (University of Amsterdam, The Netherlands)
Satoshi Tojo (JAIST, Japan)
Allard Tamminga (University of Greifswald, Germany)
Tomoyuki Yamada (Hokkaido University, Japan)



Organizing Committee
Nobuo Kurata (Hokkaido University, Japan)
Katsuhiko Sano (Hokkaido University, Japan)
Tomoyuki Yamada (Hokkaido University, Japan)



The Program and the Table of Contents
Day 1: 28 February, 2022

Session 1

15:50–15:55 Opening
15:55–16:40 [Key Note Lecture] Ryo Hatano & Katsuhiko Sano, “Dynamic Logic

of Relation Changers Meets Brouwer” . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
16:45–17:30 [Key Note Lecture] Tai-Wei Hu & Mamoru Kaneko, “Epistemic

Infinite-Regress Logics: the Surface to Deeper Layers and Latent
Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

17:35–18:20 [Key Note Lecture] Satoshi Tojo, “Plurivalent Logic for Multi-Agent
Systems” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Session 2

18:25–18:50 Yasuo Nakayama, “Agents, Actions, and Social Reality” . . . . . . . . . . . 4
18:55–19:20 Satoru Suzuki, “Measurement-Theoretic Remarks on Reducibility

of Decision-Theoretic Values of Questions and Answers to Their
Information Values” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

19:20–20:10 Break
20:10–20:55 [Key Note Lecture] Fenrong Liu, “A Simple Logic of the Hide

and Seek Game” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
21:00–21:45 [Key Note Lecture] Johan van Benthem, “Graph Games and Logic

Design” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Day 2: 1 March, 2022

Session 3

16:00–16:45 [Key Note Lecture] Jeremy Seligman, “Inference as Belief Change”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

16:50–17:35 [Key Note Lecture] Tomoyuki Yamada, “Completeness
of Common sense Term-Sequnce-Deontic-Alethic Logic” . . . . . . . . 61

17:40–18:05 Masanobu Toyooka and Katsuhiko Sano, “Craig Interpolation
for a Sequent Calculus for Combining Intuitionistic and Classical
Propositional Logic” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Session 4

18:10–18:35 Tomoaki Kawano, “Simple Model and the Deduction System
for Dynamic Epistemic Quantum Logic” . . . . . . . . . . . . . . . . . . . . . . . .67

18:40–19:05 Leonardo Pacheco and Kazuyuki Tanaka, “On the Degrees
of Ignorance: via Epistemic Logic and µ-Calculus” . . . . . . . . . . . . . . . 74

19:10–19:55 [Key Note Lecture] Sonja Smets, “The Creation and Change of
Social Networks” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

19:55–20:45 Break
20:45–21:30 [Key Note Lecture] Alexandru Baltag, “Learning what Others

Know” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
21:30–21:35 Closing



Dynamic Logic of Relation Changers Meets
Brouwer

Ryo Hatano, Tokyo University of Science
Katsuhiko Sano, Hokkaido University

This talk proposes an intuitionistic generalization of van Benthem and Liu (2007)’s
dynamic logic of relation changers, where relation changers are dynamic operators
which rewrite each agentfs accessibility relation. We employ Nishimura (1982)’s Kripke
semantics for a constructive propositional dynamic logic to define the semantics of re-
lation changers. A sound and complete axiomatization of the constructive dynamic
logic of relation changers is provided. Moreover, we follow Hatano and Sano (2020)’s
approach to provide a different semantics for dynamic logic of relation changers, where
relation changers are regarded as bounded morphisms. This alternative semantics leads
us to a semantic completeness proof of the axiomatization for the original semantics,
which does not require a reduction strategy based on recursion axioms.
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Epistemic Infinite-Regress Logics: 
the Surface to Deeper Layers and Latent Infinity 

by 

Tai-Wei Hu, University of Bristol, England 

Mamoru Kaneko, University of Tsukuba, Waseda University 

Abstract 

Common knowledge/belief is an important component in game theory, but its infinitary nature often 

hinders progress of game theory as a part of social science. The state of affairs behind a game situation 
may include such an infinite structure as latent. Formally, we consider an infinite-regress logic IR𝛽𝛽 

with two agents, which is a fixed-point logic. The subscript 𝛽𝛽 is be a bound on the nested depths of 

beliefs and fixed-point (infinite-regress) operators; the limit case 𝛽𝛽 = 𝜔𝜔  is unbounded. A proof 
system IR𝛽𝛽  is constructed within the bound β, but the corresponding Kripke semantics already 

includes an infinite valuation, which is uniform over different bounds 𝛽𝛽  up to ω. The smallest 
meaningful case is 𝛽𝛽 = 3. The soundness-completeness theorem connecting IR𝛽𝛽 with its semantics 

is provided; the proof theoretical part is interpreted as going from the surface to deeper layers as 𝛽𝛽 
becomes larger. In logic IR𝛽𝛽, each’s basic beliefs may be different from the other’s, in order to capture 

the feature that the individual beliefs are in the mind of each agent. Nevertheless, they have external 

interactions through their social world, after each's individual logical calculation, and after external 

interactions, each may revise his internal basic beliefs. Then, the situation starts again. 
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Plurivalent Logic for Multi-Agent Systems

Satoshi Tojo

Japan Advanced Institute of Science and Technology

Dynamic Epistemic Logic is versatile in knowledge representation, however, its
Kripke semantics requires a huge number of possible worlds, and furthermore, the
combinatorial number of access relations complicates the description and is not intelli-
gible. On the contrary, sometimes we need more to express; e.g, we want to distinguish
between legible information and illegible one, and so on. To solve such problems, we
employ many-valued logic to the multi-agent system. We extend the semantics of epis-
temic logic to 4-valued one to distinguish the public propositions and private propo-
sitions. Plurivalent Logic provides multiple valuation functions; one strictly refers to
logical truth and so do others to various agent’s epistemic states. Therefore the logic
simply simulates epistemic logic with a pair of truth values. Furthermore, paired se-
mantics can simulate classical logic, weak Kleene logic, and paraconsistent Kleene
logic, with simple designated-value changes.
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Agents, Actions, and Social Reality 
Yasuo NAKAYAMA 

Graduate School of Human Sciences, Osaka University 

nakayama@hus.osaka-u.ac.jp 

In this presentation, we propose BDOI-model of atomic agents. BDOI-model 

characterizes mental states of an atomic agent through triple belief, desire, 

normative belief and explains actions based on mental states and intention. Parts 

of mental states and interpretation of terms can be shared among atomic agents. 

An aim of this presentation is to explain the construction of social reality based 

on an analysis of agents, shared mental states, and actions. 

1. Model of Atomic Agents
Donald Davidson provided the standard theory of action (Davidson 1980). The core of

this theory can be expressed by the following three theses (Schlosser 2021, Sect. 2 and 

Sect. 2.1). 

(1a) The notion of intentional action is more fundamental than the notion of action. 

(1b) There is a close connection between intentional action and acting for a reason. 

(1c) [Theory of agency] A being has the capacity to act intentionally just in case it 

has the right functional organization: just in case the instantiation of certain 

mental states and events (such as desires, beliefs, and intentions) would cause 

the right events (such as certain movements) in the right way. 

In this presentation, we accept the first two theses and modify (1c). We propose that 

mental states can be characterized by beliefs, desires, and normative beliefs and that an 

intention leads an agent, based on the given mental states, to performance of an action. 

John Searle pointed out that an action may have desire-based reason or desire-

independent reason (Searle 2010: Chap. 6 Sect. 1). Modifying Searles position, we 

propose that an action may have reason that is based on both desires and normative beliefs. 

Now, we start our proposal with the following description of atomic agents and call it 

BDOI-model of atomic agents (Nakayama 2017a, 2021). 

(2a) [Atomic agent] An atomic agent can perform some actions. A part of mental states 

of an atomic agent can be characterized through triple belief, desire, normative 
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belief, where each of the three components of the triple is a set of First-Order 

sentences (FO-sentences). I call this triple BDO-system. This BDO-system can be 

updated when an agent obtains new information. 

(2b) [Transparency] Mental states described in (2a) is transparent in the following 

sense: 

(i) [Belief] If A believes that , then A knows that A believes that . 

(ii) [Desire] If A desires that , then A knows that A desires that . 

(iii) [Normative belief] If A believes that it is obligated that , then A knows that A 

believes that it is obligated that .  

(2c) [Intention as decision making] An atomic agent chooses an action type based on 

her/his BDO-system and performs it. In such a case, we say that this agent 

intentionally performed this action.  

 

We use not, &, or, , and  as meta-language expressions of logical connectives. 

Pair BB, OB which is a subsystem of BDO-system BB, DB, OB is called a BO-system. Let 

cons be an abbreviation of consistent and Cn(X) be an abbreviation of the deductive closure of X. 

 

(3a) [Belief] BBDO  def (cons(BB) & Cn(BB)) 

(3b) [Possibility] MBDO  def cons(BB{}) 

(3c) [Obligation] OBDO  def (cons(BBOB) & Cn(BBOB) & not (Cn(BB))) 

(3d) [Prohibition] FBDO  def OBDO  

(3e) [Permission] PBDO  def (cons(BBOB{})& not (Cn(BB))) 

(3f) [Desire] DBDO  def (cons(BBDB) & Cn(BBDB) & not (Cn(BB))) 

(3g) BDO is consistent def (cons(BBOB) & cons(BBDB)) 

(3h) [Respect] Atomic agent A with BDO-system BB, DB, OB respects BO-system BBs, 

OBs def BBsBB & OBsOB & any action type that A chooses to perform is 

compatible with BBsOBs. 

 

According to (3h), an atomic agent who respects a BO-system obeys any obligation in 

the BO-system and she/he chooses only action types that are permitted in the BO-system. 

For example, a player of chess respects the BO-system of chess and she/he plays chess 

keeping out of violation of the BO-system. 

We can update a BDO-system BB, DB, OB by updating BB or DB or OB. We call the 

framework that allows this kind of updates Dynamic BDO-Logic. A BDO-system in 

Dynamic BDO-Logic contains information about its stage. We write a BDO-system of 

Dynamic BDO-Logic as follows: BDO(k) = BB(k), DB(k), OB(k). A play of standard 
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two-man games can be described in Dynamic BO-Logic that is a subsystem of Dynamic 

BDO-Logic (Nakayama 2016, 2017a, 2021). 

According to Searle, there are two types of rules, namely regulative and constitutive 

rules (Searle 1969: Chap. 2.5). Regulative rules regulate a pre-existing activity, an activity 

whose existence is logically independent of the rules. Regulative rules characteristically 

take the form of or can be paraphrased as imperatives, e.g., "Officers must wear ties at 

dinner". Constitutive rules constitute an activity the existence of which is logically 

dependent on the rules. Constitutive rules can be paraphrased as "X counts as Y in context 

C". A typical example is an introduction of a term used in a game., e.g., "A checkmate is 

made when the king is attacked in such a way that no move will leave it unattacked" (p. 

34f). Both rules can be expressed in BO-Logic. In BO-system for officers BBofficer, OBofficer, 

the FO-translation of sentence "Officers wear ties at dinner" is a member of OBofficer. 

Similarly, in BO-system of chess BBchess, OBchess, the FO-translation of sentence "A 

checkmate is made if and only if the king is attacked in such a way that no move will 

leave it unattacked" is a member of BBchess. 

 

2. Ontology for Actions and Agents 
Davidson developed an event ontology and considered events as First-Order objects as 

well as things. Furthermore, he interpreted actions as events that are intentional under 

some descriptions (Davidson 1980). Nakayama (2017b, 2019) extended this event-based 

semantics of Davidson and developed an axiomatic theory for Four-Dimensional Event 

Ontology (4EO). This theory is based on General Extensional Mereology (GEM) for 

(four-dimensionally extended) events. 4EO claims that everything is a four-dimensional 

object (4D-object). 

 

(4a) The universe is the maximal 4D-object. This means that any 4D-object is a part of 

the universe. 

(4b) An event is a 4D-bject. Thus, an action is also a 4D-object. 

(4c) An agent is a 4D-object. 

 

Atomic agents can share some parts of their mental states. We describe shared mental 

states of a group of atomic agents as follows. 

 

(5a) Let group G be the mereological sum of atomic agents A1, …, An. Let BDO(Ak) = 

BB(Ak), DB(Ak), OB(Ak). 

(5b) [Shared belief]  is a shared belief in G def for all Ak in G,  BB(Ak). 
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(5c) [Shared desire belief]  is a shared desire belief in G def for all Ak in G,  

DB(Ak). 

(5d) [Shared obligation belief]  is a shared obligation belief in G def for all Ak in G, 

 OB(Ak). 

(5e) [Shared interpretation] All agents in G share interpretation of language L def 

every agent in G interprets all symbols in L in the same way. 

(5f) [Shared BO-system] BO-system BB, OB is shared in G def all atomic agents in 

G share all beliefs in BB, all obligation beliefs in OB, and interpretation of all 

symbols in BB and OB. 

(5g) [Game players] If G is a group of players of a game that is defined by a BO-system, 

then this BO-system is shared in G and respected by all players in G. 

 

Now, the notion of extended agent can be specified as follows (Nakayama 2013). 

 

(6a) [Atomic agent] An atomic agent is an agent. Any spatial part of an atomic agent is 

no agent.  

(6b) [Agents and tools] Let temporal-part (x, t) denote the temporal part of object x in 

extended time t. Let A be an agent who uses thing B in t to perform an action. Then, 

the mereological sum temporal-part (A, t) + temporal-part (B, t) is an agent. 

(6c) [Collective action] For every agent A who is a part of G, if E is a collective action 

performed by G, then there is an action of A that is a part of E.  

(6d) If group G of agents performs a collective action in t, then temporal-part (G, t) is 

an agent. 

(6e) If an object satisfies neither (6a) nor (6b) nor (6d), then it is no agent. (Note that 

this definition of action is recursive.) 

(6f) [Extended agent] An agent that is not atomic is called an extended agent. 

 

The collectivity is created based on the ability of people to share parts of mental 

states and interpretation of a language. In general, an extended agent is more than the 

fusion of atomic agents, because it can contain several artifacts as its components (see 

(6b)). If B1 is the building of a factory, M1 is the machine in B1, and A1, … , An are 

workers in B1, and t denotes working hours, then temporal-part ((A1 + … + An) + M1), 

t) is an extended agent. The workers in B1 produce goods with M1 and this production 

is a collective action (see (6c)). It is a characteristic of our description of collective 

actions that it takes artifacts as well as humans into consideration. 
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3. Social Actions and Social Reality 
Max Weber thought that social actions of individuals construct the society. Thus, Weber 

characterized sociology as a science which attempts the interpretive understanding of 

social action to arrive at a casual explanation of its course and effects (Weber 1922: Sect. 

1). This proposal looks persuasive, but it is also true that the society supports social 

actions. This means that the society and social actions are interconnected. Searle pointed 

out that some action types and some mental states presuppose some social institutions. 

For example, you can desire to have much money and buy things with money, because 

there is a monetary system established in the society (Searle 2010: Chap. 6, Sect. 1). This 

monetary system can be interpreted as BO-system BBms, OBms that is shared and 

respected by almost all members of this society. 

Many actions presuppose the existence of the society. For example, if you use a smart 

phone to play a game, you need a smart phone that is invented and produced in the past. 

Based on this invention and the spread of smart phones, the action type of using a smart 

phone is created. This type of creation presupposes shared beliefs and shared 

interpretations of terms for some artifacts. Another type of creation can be found in games. 

For example, hitting a home run is particular action type in a baseball game. This type of 

creation presupposes shared BO-system for a game and shared interpretation of terms in 

the BO-system. Additionally, playing a team game presupposes some shared desires 

among members of a team. These examples show that the existence of many current 

actions presupposes some current shared BO-systems and some collective actions in the 

past. 
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Measurement-Theoretic Remarks on
Reducibility of Decision-Theoretic Values of
Questions and Answers to Their Information

Values (Extended Abstract)

Satoru Suzuki

Faculty of Arts and Sciences, Komazawa University,
1-23-1, Komazawa, Setagaya-ku, Tokyo 154-8525, Japan

bxs05253@nifty.com

1 Motivation

The theory of questions and answers is one of the most popular topics in speech
act theory. According to Cross and Roelofsen [4], whether-questions can be clas-
sified into at least two categories. The first category is an yes/no question like
(1):

(1) Was there a quorum at the meeting?

(1) has the following two direct answers:

(1a) Yes. There was a quorum at the meeting.
(1b) No. There was not a quorum at the meeting.

(1) presupposes that the meeting took place. (1) also has a corrective answer:

(1c) The meeting did not take place.

Although (2) can be read as an yes/no question having two direct answers, it
also has a reading on which it presents the following three direct answers:

(2) Does Jones live in Italy, in Spain, or in Germany?

(2a) Jones lives in Italy.
(2b) Jones lives in Spain.
(2c) Jones lives in Germany.

(2) falls under the second category of whether-questions. (2) presupposes that
Jones lives in Italy, in Spain, or in Germany. (2) also has a corrective answer:

(2d) Jones does not live in Italy, in Spain, or in Germany.

Whether-questions have a finite number of direct answers, whereas which-
questions like (3) and (4) may have an indefinite or infinite number of direct
answers.
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(3) Which Cardinal was elected Pope in 2013?
(4) Who shot J.R.?

Belnap and Steel [1] refer to wether- and which-questions like (3) and (4) as
elementary questions. Hamblin [7] takes a question to denote, in a world w, the
set of all propositions corresponding to a possible answer to the question. A
fundamental problem is that Hamblin semantics does not specify what a pos-
sible answer is. Groenendijk and Stokhof [6] take a question to denote, in each
world, a single proposition corresponding to the true exhaustive answer to the
question in that world. What the true exhaustive answer to a question in a
given world is is much clear than what all the possible answers to that question
are. Then the meaning of a question can be identified with a set of mutually
exclusive and exhaustive propositions (i.e., partition) of the logical space. In this
paper, we would like to argue about the crossroads of the theory of questions
and answers, decision theory, and information theory in terms of measurement
theory (cf. Krantz et al. [8]). The aim of this paper is to remark, in terms of
such measurement-theoretic concepts as scale types, on the reducibility of the
decision-theoretic values of questions to the their information-theoretic values
on the basis of Luce [9]’s theorems. The selling point of this paper is not giv-
ing a new linguistic (empirical) analysis of questions and answers but giving a
new measurement-theoretic (conceptual) analysis of the decision-theoretic and
information-theoretic sides of questions and answers.

2 Decision-Theoretic and Information-Theoretic Values
of Questions and Answers

According to van Rooij [10, 11], the relevance of a question and its answers can
be determined in terms of how much it contributes to solving a decision problem
that can be modeled by a decision space (W,F , P, U). When a partition R is
given, decision-theoretic value DVR(B) of a proposition B with respect to R is
defined as follows:

Definition 1 (DVR(B)).

DVR(B) := max
U

∑
A∈R

P (A|B)U(A ∩B)−max
U

∑
A∈R

P (A)U(A).

The expected decision-theoretic value EDVR(Q) of a question (partition) Q with
respect to R is defined by DVR(B):

Definition 2 (EDVR(Q)).

EDVR(Q) :=
∑
B∈Q

P (B)DVR(B).

On the other hand, the relevance of a question and its answers can be analyzed
also in terms of information theory. The informational value IVR(A) of A ∈ F
with respect to a partition R:
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Definition 3 (IVR(B)).

IVR(B) := H(R)−HB(R) =
∑
A∈R

P (A|B) logP (A|B)−
∑
A∈R

P (A) logP (A),

where HB(R) is the entropy of R with respect to the probability function condi-
tionalized on B.

The expected information-theoretic value EIVR(Q) of a question (partition) Q
with respect to R that is defined by IVR(B):

Definition 4 (EIVR(Q)).

EIVR(Q) :=
∑
B∈Q

P (B)IVR(B) =
∑
B∈Q

∑
A∈R

P (A ∩B) log
P (A ∩B)

P (A)P (B)
.

3 Reducibility: Properness, Locality, and Underlying
Context

In general, the decision-theoretic values of questions and answers do not agree
with their information-theoretic values. Then when the decision-theoretic values
of questions and answers can be reduced to their information-theoretic values?
We would like to consider this problem. When this problem is considered, such
properties of U as properness and locality are often focused. Properness is defined
as follows:

Definition 5 (Properness). U is a proper iff
∑
A∈R

P (A)·U(P,A) ≥
∑
A∈R

P (A)·

U(P ′, A) for any P and P ′.

Locality is defined as follows:

Definition 6 (Locality). U is local iff U is defined only by P (A)(P ′(A)) where
A ∈ R but not by P (P ′).

Fischer [5] proves the following theorem:

Fact 1 (Logarithmic Utility Function) If U is differentiable, proper and lo-
cal utility functions (scoring rules) for probability functions, and R has more than
two cells, then U(P (A)) = α logP (A) + γ, where α > 0.

From Fact 1, van Rooij [10, p. 395] deduces the following proposition:

Fact 2 (Reducibility) If U is differentiable, proper and local utility functions
(scoring rules) for probability functions, and R has more than two cells, and
moreover α = 1 and γ = 0 in U(P (A)) = α logP (A) + γ, then both DVR(A) =
IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR can be reduced to
(E)IVR.

12



4 S. Suzuki

Although deducing itself the logarithmic utility functions from properness and
locality is clear, the statuses of these functions and conditions are not clear to us.
So we would like to consider these statuses in terms of comparing the logarithmic
utility functions with other proper utility functions. Besides the logarithmic
utility functions, there are at least two kinds of frequently-used proper utility
functions (scoring rules) for probability functions:

1. quadratic: U(P (A)) := 2P (A)−
∑
B∈R

P (B)2, and

2. spherical: U(P (A)) :=
P (A)√∑

B∈R

P (B)2
.

Both the quadratic and spherical utility functions are not local. Among these
three types of functions, the logarithmic utility functions only are both proper
and local. Which of these three utility functions should be chosen? Bickel [2]
criticizes the quadratic and spherical utility functions in the following two points:

1. The quadratic and spherical utility functions often result in extreme ranking
differences when compared to the logarithmic utility functions.

2. Because of nonlocality, the quadratic and spherical utility functions allow
for the undesirable possibility that one expert receives the highest utility
(score) when assigning to the observed proposition a probability lower than
the probabilities assigned by other experts.

On the other hand, Selten [12] criticizes the logarithmic utility functions in the
following two points:

1. Their resulting utility (score) is too sensitive to small mistakes for small
probabilities.

2. An expert’s utility (score) is −∞ when a proposition holds that she predicted
to be impossible. So the logarithmic utility functions are unbounded and
they need to be truncated, but it will be no longer be proper after such a
truncation.

According to Carvalho [3, p. 4], “the choice of the most appropriate proper
scoring rule is dependent on the desired properties, which in turn is dependent
on the underlying context.” Properness and locality can be considered to be
examples of “desired properties”. Because the statuses of the logarithmic utility
functions, properness and locality are not clear to us as we said before, we
would like to change our viewpoint from the relation between these functions and
conditions to the relation between these functions and the “underlying context”
to determine when U is a logarithmic function. Then the following problem
arises:

Problem 1 (Reducibility and Underlying Context) What is an underly-
ing context to determine when (E)DVR can be reduced to (E)IVR, that is, when
U is a logarithmic function and so both DVR(A) = IVR(A) and EDVR(Q) =
EIVR(Q) hold?

13
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4 Luce’s Theorems: Psychophysical Laws

Now we try to cope with Problem 1 in terms of such measurement-theoretic
concepts as scale types based on the class of admissible transformations:

Definition 7 (Scale Types). A scale is a triple 〈U,V, f〉 where U is an ob-
served relational structure that is qualitative, V is a numerical relational struc-
ture that is quantitative, and f is a homomorphism from U into V. A is the
domain of U and B is the domain of V. When the admissible transformations
are all the functions ϕ : f(A) → B, where f(A) is the range of f, of the
form ϕ(x) := αx;α > 0. ϕ is called a similarity transformation, and a scale
with the similarity transformations as its class of admissible transformations is
called a ratio scale. When the admissible transformations are all the functions
ϕ : f(A) → B of the form ϕ(x) := αx + β;α > 0, ϕ is called a positive affine
transformation, and a corresponding scale is called an interval scale.

Remark 1 (Ratio and Interval Scales) The indefinite integral of a ratio
scale is an interval scale.

Indeed the concept of (underlying) context is ambiguous. But when U := ψ(P ),
ψ can be considered to be an underlying context to connect P to U and to
determine when U is a logarithmic function and so both DVR(A) = IVR(A)
and EDVR(Q) = EIVR(Q) hold. Luce [9] proves the theorems on the types
of psychophysical laws that connect the physical scales to psychological scales
in terms of measurement theory. First, Luce proves the following theorem that
connects ratio scales as physical scales to ratio scales as psychological scales:

Fact 3 (From Ratio Scale to Ratio Scale) Suppose that f : A → IR+ and
g : A → IR+ are both ratio scales and that g(a) = ψ(f(a)) for any a ∈ A and
that ψ is continuous. Then ψ(x) = αxβ, where α > 0.

Second, Luce [9] proves the following theorem that connects ratio scales as phys-
ical scales to interval scales as psychological scales:

Fact 4 (From Ratio Scale to Interval Scale) Suppose that f : A → IR+ is
a ratio scale and g : A→ IR is an interval scale and that g(a) = ψ(f(a)) for any
a ∈ A and that ψ is continuous. Then ψ(x) = αxβ + γ or ψ(x) = α log x+ γ.

5 Reducibility and Scale Types

Luce proves Fact 4 independently of Fact 3. In addition, he proves Fact 4 as a
corollary of Fact 3 on the assumption that ψ is not only continuous but also
differentiable in such a way that since the indefinite integral of a ratio scale is
an interval scale, if f is considered to be a ratio scale and g is an interval scale,
then either ψ(x) = α

β+1x
β+1 + γ if β 6= −1 or ψ(x) = α log x + γ if β = −1.

Facts 3 and 4 may be originally intended to determine the psychophysical laws
that connect the physical scales to psychological scales. But we can regard Luce’s

14



6 S. Suzuki

theorems as the theorems which have wider applicability in the sense that these
theorems can make clear connection between scales in general. Now we would
like to use these theorems in order to furnish a solution to Problem 1:

Proposition 1 (Reducibility and Scale Types). Suppose that a ratio scale
P (in a wide sense) is given, and that an underlying context ψ(x) := αxβ ;α > 0
is given connecting P to a ratio scale (stronger cardinal utility) U∗, and that
R has more than two cells. Then if β = −1 and the integral constant of∫
U∗(P )dP equals 0, then such interval scale (weaker cardinal utility) U as

U(P ) :=
∫
U∗(P )dP is a logarithmic function and, when DVR is defined by

U , both DVR(A) = IVR(A) and EDVR(Q) = EIVR(Q) hold, that is, (E)DVR
can be reduced to (E)IVR, and if β 6= −1, then U is no logarithmic function—
it may be quadratic or spherical function—and either DVR(A) = IVR(A) or
EDVR(Q) = EIVR(Q) does not always hold, that is, (E)DVR cannot be reduced
to (E)IVR.

Remark 2 (Solution to Problem 1) Proposition 1 states that such condi-
tions as especially the value of β (i.e., β = −1 or not) concerning the underlying
context ψ(x) := αxβ connecting a ratio scale P to a ratio scale U∗ determines
when the decision-theoretic value of questions and answers can be reduced to
their information-theoretic values, which furnishes a solution to Problem 1.
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Motivation

Theory of Questions and Answers

The theory of questions and answers is one of the most popular
topics in the philosophy of language (cf. Cross and Roelofsen
(2020)).

C. Cross and F. Roelofsen.
Questions, 2020.
Stanford Encyclopedia of Philosophy.
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Motivation

Hamblin Semantics

Hamblin (1973) takes a question to denote, in a world w , the
set of all propositions corresponding to a possible answer to
the question.

C. L. Hamblin.
Questions and Answers in Montague English.
Foundations of Language, 10:41–53, 1973.

A fundamental problem is that Hamblin semantics does not
specify what a possible answer is.
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Motivation

Partition Semantics

Groenendijk and Stokhof (1984) take a question to denote, in
each world, a single proposition corresponding to the true
exhaustive answer to the question in that world.

J. Groenendijk and M. Stokhof.
Studies on the Semantics of Questions and the
Pragmatics of Answers.
University of Amsterdam, 1984.

The meaning of a question can be identified with a set of
mutually exclusive and exhaustive propositions (i.e., partition)
of the logical space.

What the true exhaustive answer to a question in a given
world is much clear than what all the possible answers to that
question are.
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Motivation

Crossroads

In this talk, we would like to argue about the crossroads of the
theory of questions and answers, decision theory, and information
theory in terms of measurement theory (cf. Krantz et al. (1971)).

D. H. Krantz et al.
Foundations of Measurement, volume 1.
Academic Press, New York, 1971.
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Motivation

Aim of This Talk

The aim of this talk is to remark, in terms of such
measurement-theoretic concepts as scale types, on the
reducibility of the decision-theoretic values of questions to the
their information-theoretic values on the basis of Luce
(1959)’s theorems.

R. D. Luce.
On the possible psychophysical laws.
The Psychological Review, 66:81–95, 1959.

The selling point of this talk is not giving a new linguistic
(empirical) analysis of questions and answers but giving a new
measurement-theoretic (conceptual) analysis of the
decision-theoretic and information-theoretic sides of questions
and answers.
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Relevance of Question to Decision Problem: Two Scales

According to van Rooij (2004, 2009), the relevance of a question
to a decision problem can be scaled in terms of decision theory and
information theory.

van Rooij, R.:
Utility, informativity and protocols.
Journal of Philosophical Logic, 33:389–419, 2004.

van Rooij, R.:
Comparing questions and answers: A bit of logic, a bit of
language, and some bits of information.
In: Sommaruga, G. (ed.) Formal Theories of Information: from
Shannon to Semantic Information Theory and General
Concepts of Information, LNCS 5363, pp. 161–192. Springer,
Heidelberg, 2009.
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Decision-Theoretic Value

First, the relevance of a question to a decision problem can be scaled in terms
of decision theory:

Definition (DVR)

When a partition R is given, we define the decision-theoretic value DVR(B) of
a proposition B with respect to R:

DVR(B) := max
U∈U

EU(A ∩ B)− max
U∈U

EU(A)

= max
U∈U

∑

A∈R
P(A|B)U(A ∩ B)− max

U∈U

∑

A∈R
P(A)U(A),

where U is a variable and U is the class of all utility functions.

Definition (EDVR)

The expected decision-theoretic value EDVR(Q) of a question (partition) Q
with respect to R is defined by DVR(B):

EDVR(Q) :=
∑

B∈Q
P(B)DVR(B).
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Information-Theoretic Value

Second, the relevance of a question to a decision problem can be scaled also in
terms of information theory:

Definition (IVR)

The information-theoretic value IVR(A) of A ∈ F with respect to a partition R:

IVR(B) := H(R)− HB(R) =
∑

A∈R
P(A|B) logP(A|B)−

∑

A∈R
P(A) logP(A),

where H(R) is the entropy of R, and HB(R) is the entropy of R with respect
to the probability function conditionalized on B.

Definition (EIVR)

The expected information-theoretic value EIVR(Q) of a question (partition) Q
with respect to R that is defined by IVR(B):

EIVR(Q) :=
∑

B∈Q
P(B)IVR(B) =

∑

B∈Q

∑

A∈R
P(A ∩ B) log

P(A ∩ B)

P(A)P(B)
.
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Example

In general, the decision-theoretic values of questions and answers do not agree with
their information-theoretic values. The following example by van Rooij (2009)
illustrates this fact:

Example (Discrepancy)

John considers the decision problem of whether he should go to the party
tonight.
This decision problem depends almost entirely on whether Mary will go,
because he is secretly in love with Mary, and believes that going to the party is
his only chance to meet her.
He prefers meeting her tonight to not meeting her, but if Mary wont go, he
prefers to stay home.
But going to the party when Mary comes too obviously involves a risk: Mary
might turn him down when he makes his advances.
In this situation 4 different worlds are involved:

w1: Mary goes to the party, John will go, too, he will try his luck, and is
successful.
w2: Mary goes, John goes, he tries his luck, and is unsuccessful.
w3: Mary won’t go to the party, and thus neither does John, and if John tried his
luck, he would be successful.
w4: similar to w3 except that in this world if John tried his luck, he would be
unsuccessful.

Then the partition is R := {{w1,w2}, {w3,w4}}.
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Example (Continued)

Example (Discrepancy (Continued))

John thinks all worlds are equally likely to come out true.
He has a negative attitude towards taking risks.
He doesn’t care about what Mary would do if they don’t go to the party.
His decision problem might be represented by the following table:

World Probability Utility

w1
1
4 12

w2
1
4 2

w3
1
4 8

w4
1
4 8

Suppose that John considers the question of whether he will be successful if he
tries the luck.
Then the semantic value of the question is Q := {{w1,w3}, {w2,w4}}.
When the semantic value of the positive answer (to the question) that he will
be successful is B := {w1,w3}, that of the negative answer that he will not be
successful is BC = {w2,w4}.
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Decision-Theoretic and Information-Theoretic Values of Questions and Answers

Example (Continued)

Example (Discrepancy (Continued))

DVR(B) = maxU∈U EU(A∩B)−maxU∈U EU(A) = EU(A∩B)−EU(A) = 5
2 .

On the other hand, neither learning B nor learning BC changes the entropy of
the partition R, that is,

IVR(B) = H(R)− HB(R) = IVR(BC ) = H(R)− HBC (R) = 0,

because neither learning B nor learning BC changes the probability distribution
of the elements of R, that is, H(R), HB(R) and HBC (R) each have a value of 1.

EDVR(Q) := P(B)DVR(B) + P(BC )DVR(BC )

= P(B)(EU(A ∩ B)− EU(A)) + P(BC )(EU(A ∩ BC )− EU(A)) = 0

Because not only the positive answer B to the question, but also the negative
answer BC has no effect on the probability distribution of the elements of Q,
EIVR(Q) = H(R)− HQ(R) = 0.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Reducibility of Decision-Theoretic Values to Information-Theoretic Values

Contents of This Talk

1 Motivation

2 Decision-Theoretic and Information-Theoretic Values of
Questions and Answers

3 Reducibility of Decision-Theoretic Values to
Information-Theoretic Values

4 Luce’s Theorems: Psychophysical Laws

5 Reducibility and Scale Types

6 Concluding Remarks

19



Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Reducibility of Decision-Theoretic Values to Information-Theoretic Values

In general, the decision-theoretic values of questions and
answers do not agree with their information-theoretic values.

Then when the decision-theoretic values of questions and
answers can be reduced to their information-theoretic values?

We would like to consider this problem.

When this problem is considered, such properties of U as
properness and locality are often focused.
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Properness and Locality

A score rule is defined as follows:

Definition (Scoring Rule)

We call a utility function U for probability functions P defined on a partition R
a scoring rule for P. For any A,B, . . . ∈ R, we abbreviate U(P(A),P(B), . . .)
as U(P).

Properness is defined as follows:

Definition (Properness)

A scoring rule U for P is proper iff
∑

A∈R
P(A) · U(P) = sup

P′∈P

∑

A∈R
P(A) · U(P ′)

for any P ∈P that is the class of all probability functions defined on a
partition R.

Locality is defined as follows:

Definition (Locality)

A scoring rule U for P is local iff, for any P ∈P, there exist such U ′ that
U(P) = U ′(P(A)) for any A ∈ R.
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Fisher’s Theorem

Fischer (1972) proves the following theorem:

Fact (Logarithmic Scoring Rule)

If U is differentiable, proper and local scoring rules for probability functions P,
and R has more than two cells, then U(P(A)) = α logP(A) + γ, where α > 0.

Fisher, P.:
On the inequality

∑
pi f (pi ) ≥

∑
pi f (qi ). Metrika 18, 199–208 (1972)

From Fact (Logarithmic Scoring Rule), van Rooij (2004) deduces the following
proposition:

Fact (Reducibility)

If U is differentiable, proper and local scoring rules for probability functions P,
and R has more than two cells, and moreover α = 1 and γ = 0 in
U(P(A)) = α logP(A) + γ, then both DVR(A) = IVR(A) and
EDVR(Q) = EIVR(Q) hold, that is, (E )DVR can be reduced to (E )IVR .
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Proper Scoring Rules

Although deducing itself the logarithmic scoring rules from
properness and locality is clear, the statuses of properness and
locality are not clear to us.

So we would like to consider these statuses in terms of
comparing the logarithmic scoring rules with other proper
scoring rules.

Besides the logarithmic scoring rules, there are at least two
kinds of frequently-used proper scoring rules for probability
functions:

1 quadratic: U(P(A)) := 2P(A)−
∑

B∈R
P(B)2, and

2 spherical: U(P(A)) :=
P(A)√∑

B∈R
P(B)2

.
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Both the quadratic and spherical scoring rules are not local.

Among these three types of functions, the logarithmic scoring
rules only are both proper and local.

Which of these three utility functions should be chosen?
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Bickel (2007) criticizes the quadratic and spherical scoring rule,
whereas Selten (1998) criticizes the logarithmic scoring rules.

J. E. Bickel.
Some comparisons among quadratic, spherical, and logarithmic
scoring rules.
Decision Analysis, 4:49–65, 2007.

R. Selten.
Axiomatic characterization of the quadratic scoring rule.
Experimental Economics, 1:43–62, 1998.
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Problem

According to Carvalho (2016, p.4), “the choice of the most appropriate
proper scoring rule is dependent on the desired properties, which in turn is
dependent on the underlying context.”

A. Carvalho.
An overview of applications of proper scoring rules.
Decision Analysis, Articles in Advance, 2016.

Properness and locality can be considered to be examples of “desired
properties”.
Because the statuses of properness and locality are not clear to us as we
said before, we would like to change our viewpoint from properness and
locality to the “underlying context” to determine when U is a logarithmic
function.
Then the following problem arises:

Problem (Reducibility and Underlying Context)

What is an underlying context to determine when (E )DVR can be reduced to
(E )IVR , that is, when U is a logarithmic scoring rule and so both
DVR(A) = IVR(A) and EDVR(Q) = EIVR(Q) hold?
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Luce’s Theorems: Psychophysical Laws

Measurement Theory

In this talk, we try to cope with this problem in terms of
measurement theory.

Measurement theory includes such important concepts as
1 scale types,
2 representation and uniqueness theorems, and
3 measurement types.
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Scale Types

In this talk, we resort to scale types.

Scale types have such categories as

ratio scale (unique up to ϕ(x) = αx(α > 0)), and
interval scale (unique up to ϕ(x) = αx + β(α > 0)).
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Luce’s Theorems (1)

Indeed the concept of (underlying) context is ambiguous.

But when U := ψ(P), ψ can be considered to be an
underlying context to connect P to U and to determine when
U is a logarithmic scoring rule and so both DVR(A) = IVR(A)
and EDVR(Q) = EIVR(Q) hold.

Luce (1959) proves the theorems on the types of
psychophysical laws that connect the physical scales to
psychological scales in terms of measurement theory.

First, Luce proves the following theorem that connects ratio
scales as physical scales to ratio scales as psychological scales:

Fact (From Ratio Scale to Ratio Scale)

Suppose that f : A→ R+ and g : A→ R+ are both ratio scales
and that g(a) = ψ(f (a)) for any a ∈ A and that ψ is continuous.
Then ψ(x) = αxβ, where α > 0.
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Luce’s Theorems: Psychophysical Laws

Luce’s Theorems (2)

Second, Luce proves the following theorem that connects ratio
scales as physical scales to interval scales as psychological scales:

Fact (From Ratio Scale to Interval Scale)

Suppose that f : A→ R+ is a ratio scale and g : A→ R is an
interval scale and that g(a) = ψ(f (a)) for any a ∈ A and that ψ is
continuous. Then ψ(x) = αxβ + γ or ψ(x) = α log x + γ.
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Luce proves Fact (From Ratio Scale to Interval Scale)
independently of Fact (From Ratio Scale to Ratio Scale).

In addition, he proves Fact (From Ratio Scale to Interval
Scale) as a corollary of Fact (From Ratio Scale to Ratio
Scale) on the assumption that ψ is not only continuous but
also differentiable in such a way that since the indefinite
integral of a ratio scale is an interval scale, if f is considered
to be a ratio scale and g is an interval scale, then either
ψ(x) = α

β+1x
β+1 + γ if β 6= −1 or ψ(x) = α log x + γ if

β = −1.

Facts (From Ratio Scale to Ratio Scale) and (From Ratio
Scale to Interval Scale) may be originally intended to
determine the psychophysical laws that connect the physical
scales to psychological scales.

But we can regard Luce’s theorems as the theorems which
have wider applicability in the sense that these theorems can
make clear connection between scales in general.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Reducibility and Scale Types

Now we would like to use these theorems in order to furnish a solution to
Problem (Reducibility and Underlying Context):

Proposition (Reducibility and Scale Types)

Suppose

that a ratio scale P (in a wide sense) is given, and
that an underlying context ψ(x) := αxβ;α > 0 is given connecting P to a
ratio scale (stronger cardinal utility) U∗, and
that R has more than two cells.

Then

if β = −1 and the integral constant of

∫
U∗(P)dP equals 0, then

such interval scale (weaker cardinal utility) U as U(P) :=

∫
U∗(P)dP is a

logarithmic function and,
when DVR is defined by U, both DVR(A) = IVR(A) and
EDVR(Q) = EIVR(Q) hold, that is, (E )DVR can be reduced to (E )IVR , and

if β 6= −1, then U is no logarithmic function—it may be quadratic or
spherical function—and either DVR(A) = IVR(A) or
EDVR(Q) = EIVR(Q) does not always hold, that is, (E )DVR cannot be
reduced to (E )IVR .

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Reducibility and Scale Types

Remark (Solution to Problem (Reducibility and Underlying
Context))

Proposition (Reducibility and Scale Types) states that such
conditions as especially the value of β (i.e., β = −1 or not)
concerning the underlying context ψ(x) := αxβ connecting a
ratio scale P to a ratio scale U∗ determines when the
decision-theoretic value of questions and answers can be reduced
to their information-theoretic values, which furnishes a solution to
Problem (Reducibility and Underlying Context).
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Concluding Remarks

Van Rooij observes on the reducibility of the decision-theoretic
values of questions and answers to their information-theoretic
values in terms of rather unclear concepts of properness and
locality on the basis of Fischer’s theorem.

On the other hand, in this talk, we have remarked in terms of
measurement-theoretic concepts, particularly, scale types on
the reducibility of the decision-theoretic values of questions
and answers to their information-theoretic values on the basis
of Luce’s theorems.

Measurement-Theoretic Remarks on Reducibility of Decision-Theoretic Values of Questions and Answers to Their Information-Theoretic Values

Concluding Remarks

Thank You for Your Attention!
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A simple logic of the hide and seek game

Fenrong Liu

Tsinghua University

We discuss a simple logic to describe one of our favourite games from childhood,
hide and seek, and show how a simple addition of an equality constant to describe
the winning condition of the seeker makes our logic undecidable. There are certain
decidable fragments of first-order logic which behave in a similar fashion with respect
to such a language extension, and we add a new modal variant to that class. We discuss
the relative expressive power of the proposed logic in comparison to the standard modal
counterparts. We prove that the model checking problem for the resulting logic is P-
complete. In addition, by exploring the connection with related product logics, we gain
more insight towards having a better understanding of the subtleties of the proposed
framework. This is joint work with Dazhu Li, Sujata Ghosh and Yaxin Tu.
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Graph Games and Logic Design

Johan van Benthem

Amsterdam, Stanford and Tsinghua

Graph games model interesting social scenarios when normal behavior gets dis-
rupted, or (perhaps beneficially) nudged away from its ordinary course. At the same
time, these games offer interesting interfaces with old and new logics. In this survey
talk, I present some classical results on the sabotage game and its modal logic, then
move to a range of new results obtained recently by students, and I end with a general
discussion of the logic design/game design interface, including the pressing challenge
of bringing in more informational/epistemic aspects.

——————————-

Johan van Benthem & Fenrong Liu, 2019, Graph Games and Logic Design, Journal of
Tsinghua University (Philosophy and Social Sciences), 34:2, 131139.
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Logic and Games 
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Logic as Games 

   
 

 

 
  
 

 

 

 

 
 

 
evaluation of formulas in models  

comparing models for similarity/expressive power 

constructing models, SAT   

proof search, argumentation and dialogue   
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Logic of Games 

   
 

 

 
  
 

 

 

 

 
 

 
 logical analysis of game structure 

links with game theory, computer science,  

cognitive and social sciences 
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Today: In the Middle 

   
 

 

 
  
 

 

 

 

 
 

 
 games designed in tandem with logical considerations 

 
broader program in: 

J. van Benthem & F. Liu, Graph Games and Logic Design  
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Recent Dissertation (2021) 
 
 
 
 
 
 
 
 
 
 
 

further student contributions:  

later in this talk and in talk Fenrong Liu 
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Graph Games 
 

33



 

Graph Games 

Graph games  (many versions) 

analyze complexity of computation, logic, argumentation  

Intermediate between logic games and game logic 
  

A first simple example 
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 Travel Game and Modal Logic 

  
 
 

  
 

 Graph 1 Traveler has winning strategy starting in 1 
      Demon has w.s. when Traveler starts in 2 
 Graph 2 Traveler has w.s. starting in 2 
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 The Sabotage Game 

original motivation        Dutch railways 2004 
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 The Sabotage Game 

algorithmic tasks under disturbance 

complexity jumps for perturbed Graph Search problem  
 

in general larger goal regions 

Zermelo: game is determined 

solution complexity Pspace-complete 
 

interesting special cases 
  
 trees [best cut links locally], grids  
 geometrical solids: winning positions  

 with goal region sizes on Cube   
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Modal Logics for Graph Games 
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 Sabotage Modal Logic 

Modal language for studying the game via its graph invariants 

 

 

 

 

 

 
 
 

truth values of complex formulas can change after deletion 
 

dynamic logic of graph change 
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 Counter-Example 

 

 

 

 

 
 
 
 

Open problem  Axiomatize the schematic validities of SML 
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     Some Theory 

computational complexity 

model checking Pspace-complete (for modal logic: Ptime) 

SAT undecidable (for modal logic: Pspace-complete) 
 

first-order translation exists, but needs memory 

validities axiomatizable in principle, no PAL\DEL-style reduction 
 

sabotage bisimulation and invariance 
 

Student contributions: Aachen, Stanford, Beijing (Li Dazhu, Zhang Tianwei) 
 

axiomatizing validities  JvB, Shi Chenwei, Lilei, Yin Haoxuan 
 

to appear in Logic and Computation 
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      Local Sabotage, Graded Modal Logic 

  
 

 

 
 

player E does not know which move A played 
 

42



 

      Zero-One Law and Random Graph 

 Dotted lines: epistemic uncertainty relations 

 modal epistemic action language 
              

 Proof: analyze truth on the countable random graph 
  
 Also holds for modal logic, by its translation into FOL. 
 Even for first-order fixed-point logic LFP(FO) (Week 6) 
 that defines players’ winning powers in sabotage game 

 
 Fact (Chris Mierzewski)  Probability 1 for WINT 
 The sabotage game is massively in favor of Traveler! 
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Intermezzo: Some General Issues 
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Graph Logics and Game Logics 

graph logics describe the graph and game invariants 

that depend only on graph positions (e.g., winning positions) 
 

game logics describe game structure: extensive form (procedure, 

temporal unfolding), strategic form/powers (control over outcomes) 
 

when is a transition needed? 
(preferences, imperfect information, agents) 
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      Game Logics 
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Issue: Mismatch? 
 

graph logic overgenerates 

very few formulas correspond with natural game assertions (?) 
 

worse here than with logical systems in general? 
 

paradoxette: complexity mismatch 

the logic of the graphs can be complex 

while the game itself is simple to play 
 

explanation: foundations of mathematics logical theories  

of regular simple structures can be complex, and nice versa 
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Issues: Architecture 

 
When are two graph games the same? 

 

‘supergame’ instead of graph game? 
 

reductions between games/between logics 

 

 

 

 

48



 
 
 
 

 

 

Comparisons With  

Other Dynamic Logics 
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      Contrast with DEL-style Update Logic  
Analogies with Week 1 topic, but also contrasts: 

 

 
 
 

Review of Symbolic Logic 2020, JvB, KM & F Z-B 
Turn PAL into logic of stepwise object removal  
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   From PAL to MLSR 

  
 

 
 

Current project Fenrong Liu, Sujata Ghosh 
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Extensions, Variations 

Other Graph Games 
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      Game Design and Taxonomy   
 

 
 

Current project Fenrong Liu, Sujata Ghosh 
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      Meet Avoid Game & Logical Surprises 

  
 

 
 
 

 

 

Current project Fenrong Liu, Sujata Ghosh, students 

 

Undecidable logic, Talk Fenrong Liu 
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Imperfect Information  
 

 

 

 

 

 

 

In general, games like this will need probabilistic equilibria 
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Information and Questions  
 

 

 

 
 
 
 
 

general information-theoretic analysis  

number of questions needed in dynamic search? 
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Extended Epistemic-Temporal Graph Logics? 

Another example: logics with short sight in the graph 

tree of graph positions, action links for possible moves, 

epistemic links for what cannot be distinguished 

Traveler and Demon may have different views 
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Sabotage Game With Short Sight in Graph 

 
Traveler only sees links 

at the current point 

Demon sees everything 
 

Game tree     nodes: graphs with Traveler position 

moves: link cut, travel step. Epistemic links for Traveler 

Travel steps can reveal which links were cut 
 

Epistemic modal logic, forcing modalities 
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Real Games  
 

 

 
 

ongoing research at the ILLC 
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Inference as Belief Change

Jeremy Seligman

The University of Auckland

The narrative of inference is sequential. You have some information, which you
combine and transform in a series of cognitive acts until you arrive at a conclusion.
One, two and then three. At each step there is some change in your cognitive state.
I will explore the possibility that such changes are changes in belief, and discuss the
logic of this kind of belief change.
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Completeness of Common sense
Term-Sequnce-Deontic-Alethic Logic

Tomoyuki Yamada

Faculty ot Humanities and Human Sciences, Hokkaido University

The languages of propositional modal logics has been shown to be highly useful in
developing dynamic modal logics that deal with various speech acts. It is also clear,
however, that we need more expressive language if we wish to state, for example,
a general principle to the effect that if you promise to keep a person safe, you will
be committed to keep her safe. Its natural formalization may be something like the
following:

∀x∀y[Promise(x, y,Safe(y)]O(x, y, x)Safe(y),

where [Promise(x, y, ϕ)] means whenever an act of promising to see to it that ϕ is
performed by x addressing y, x will be committed to see to it that ϕ in the resulting
situation and O(x, y, z)ϕ means that it is obligatory for x with respect to y by the name
of z to see to it that ϕ. This talk presents a static base logic maths fCTS DAL (Com-
mon sense Term-Sequnce-Deontic-Alethic Logic) that we hope can be extended in to a
dynamic language in which we can state things like the one above. We define a logic,
maths fCTS DAL, in which we can state, fo example,

∀x∀y(Parent(x, y) ∧ Young(y))→ O(x, y, x)Safe(y),

which means that parents are committed to see to it that their young children are safe,
and prove its completeness. This presentation is based on joint work with Katsuhiko
Sano and Takahiro Sawasaki.
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Craig Interpolation for a Sequent Calculus for Combining
Intuitionistic and Classical Propositional Logic

Masanobu Toyooka1 and Katsuhiko Sano2

1 Graduate School of Letters, Hokkaido University, Sapporo, Japan
toyooka.masanobu.t1@elms.hokudai.ac.jp

2 Faculty of Humanities and Human Sciences, Hokkaido University, Sapporo, Japan
v-sano@let.hokudai.ac.jp

1 Introduction
This paper establishes the Craig interpolation for a multi-succedent sequent calculus for a combination
of intuitionistic and classical propositional logic, denoted by G(C + J). The calculus was provided
in [16] and is based on the semantics offered in [4, 5]. The logic, called C+ J, has two implications:
intuitionistic and classical one1. They are interpreted in the Kripke semantics as follows (cf. [4, 5]):

w |=M A→i B iff for all v ∈ W, (wRv and v |=M A jointly imply v |=M B),
w |=M A→c B iff w |=M A implies w |=M B,

where M is an intuitionistic Kripke model, w is a possible world in M , and R is a preorder equipped in
M . However this semantic treatment breaks one feature of intuitionistic logic called heredity, which is
defined as: w |= A and wRv jointly imply v |= A for all Kripke models M and all states w and v in M .
It is a well-known fact that this feature corresponds to an intuitionistically valid formula A→i(B→iA).
Therefore, the formula is not valid in the Kripke semantics of C+ J. In order to avoid the formula being
derivable in G(C+ J), the right rule for the intuitionistic implication should be restricted as follows:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i).

The resulting calculus is sound and complete and a conservative extension of both an intuitionistic and
a classical propositional sequent calculus (see [16]).

It is well-known that classical propositional logic and intuitionistic propositional logic enjoy the
Craig interpolation theorem:

If A→B is derivable, then there exists a formula C such that both ⇒ A→C and ⇒ C→B
are also derivable and that Prop(C) ⊆ Prop(A) ∩ Prop(B),

where Prop(D) denotes the set of all propositional variables in a formula D. The theorem can be
shown in terms of a classical sequent calculus LK by Maehara’s method in [9]. In multi-succedent
intuitionistic sequent calculus mLJ, the theorem can also be shown, though some modification of the
ways is needed, as is noted in [10]. Since C+ J contains the two kinds of implication, the two types of
Craig interpolation theorem can be considered in G(C+ J).

1In addition to C+ J, other attempts to combine intuitionistic and classical logic are displayed in [1, 2, 3, 6, 7, 11, 12, 13, 14].
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2 Syntax, Kripke Semantics and Sequent Calculus

2.1 Syntax and Kripke Semantics
This section reviews the syntax and the Kripke semantics of C+ J. The syntax is defined in [16], and
the Kripke semantics is based on the ones in [4, 5]. The syntax L consists of a countably infinite set Prop
of propositional variables and the following logical connectives: falsum ⊥, disjunction ∨, conjunction
∧, intuitionistic implication →i, and classical implication →c. The set Form of all formulas in our
syntax is defined inductively as follows:

A ::= p | ⊥ |A ∨A |A ∧A |A→i A |A→c A,

where p ∈ Prop. We define ⊤ := ⊥→i ⊥, ¬cA := A→c ⊥ and ¬iA := A→i ⊥.
Let us move to the semantics for the syntax L.

Definition 1. A model is a tuple M = (W,R, V ) where

• W is a non-empty set of possible worlds,

• R is a preorder on W , i.e., R satisfies reflexivity and transitivity,

• V : Prop → P(W ) is a valuation function satisfying the following heredity condition: w ∈ V (p)
and wRv jointly imply v ∈ V (p) for all worlds w, v ∈ W .

Definition 2. Given a model M = (W,R, V ), a world w ∈ W and a formula A, the satisfaction relation
w |=M A is inductively defined as follows:

w |=M p iff w ∈ V (p),
w ̸|=M ⊥,
w |=M A ∧B iff w |=M A and w |=M B,
w |=M A ∨B iff w |=M A or w |=M B,
w |=M A→i B iff for all v ∈ W, (wRv and v |=M A jointly imply v |=M B).
w |=M A→c B iff w |=M A implies w |=M B.

Let us say that a formula A is a semantic consequence of a set of formulas Γ, represented as Γ |= A, if
w |=M C for any formula C ∈ Γ, then w |=M A for all models M = (W,R, V ) and all worlds w ∈ W .
We use Γ |= ∆ if Γ |= A for some formula A ∈ ∆. We say that A is valid if ∅ |= A holds. We say a
formula A satisfies heredity if the following holds: w |= A and wRv jointly imply v |= A for all Kripke
models M and all states w and v in M .

Proposition 1. A formula ¬cp does not satisfy heredity.

Proposition 2. Neither ¬cp→i (⊤→i ¬cp) nor ¬cp→c (⊤→i ¬cp) is valid.

Proposition 2 implies that an intuitionistic tautology A →i (B →i A), which is known for the corre-
spondence to heredity in intuitionistic logic, is no longer valid.

2.2 Multi-succedent sequent calculus G(C+ J)

This section reviews the sequent calculus G(C + J) provided in [16]. In what follows, we use the
ordinary notion of multi-succedent sequent. A sequent is a pair of finite multisets denoted by Γ ⇒ ∆,
which is read as “if all formulas in Γ hold then some formulas in ∆ hold.” Table 1 provides our multi-
succedent sequent calculus G(C + J), where the notion of derivability is defined as an existence of a

2
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Table 1: Sequent Calculus G(C+ J)
Axioms

A ⇒ A
(Id) ⊥ ⇒ (⊥)

Structural Rules

Γ ⇒ ∆
Γ ⇒ ∆, A

(⇒ w) Γ ⇒ ∆
A,Γ ⇒ ∆

(w ⇒)
Γ ⇒ ∆, A,A

Γ ⇒ ∆, A
(⇒ c)

A,A,Γ ⇒ ∆

A,Γ ⇒ ∆
(c ⇒)

Γ ⇒ ∆, A A,Π ⇒ Σ

Γ,Π ⇒ ∆,Σ
(Cut)

Propositional Logical Rules

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ B

C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ A→i B
(⇒ →i)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→i B,Γ1,Γ2 ⇒ ∆1,∆2
(→i ⇒)

A,Γ ⇒ ∆, B

Γ ⇒ ∆, A→c B
(⇒ →c)

Γ1 ⇒ ∆1, A B,Γ2 ⇒ ∆2

A→c B,Γ1,Γ2 ⇒ ∆1,∆2
(→c ⇒)

Γ ⇒ ∆, A Γ ⇒ ∆, B

Γ ⇒ ∆, A ∧B
(⇒ ∧)

A,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧ ⇒1)

B,Γ ⇒ ∆

A ∧B,Γ ⇒ ∆
(∧ ⇒2)

Γ ⇒ ∆, A

Γ ⇒ ∆, A ∨B
(⇒ ∨1)

Γ ⇒ ∆, B

Γ ⇒ ∆, A ∨B
(⇒ ∨2)

A,Γ ⇒ ∆ B,Γ ⇒ ∆

A ∨B,Γ ⇒ ∆
(∨ ⇒)

finite tree, which is called a derivation, generated by inference rules of Table 1 from initial sequents
(Id) and (⊥) of Table 1.

Our basic strategy of constructing G(C + J) is to add classical implication to the propositional
fragment of multi-succedent sequent calculus mLJ of intuitionistic propositional logic, proposed by
Maehara [8]. However, if the ordinary left and right rules of classical implication were added, the
soundness of the resulting calculus would fail, because a formula ¬cp →c (⊤ →i ¬cp), which is not
valid by Proposition 2, would be derivable. This is the reason why the original right rule

A,Γ ⇒ B

Γ ⇒ A→i B

of intuitionistic implication of mLJ is restricted to the right rule given in Table 1. Based on the abbre-
viation defined in Section 2.1, the following rules for negations are obtained respectively:

A,C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒
C1 →i D1, . . . , Cm →i Dm, p1, . . . , pn ⇒ ¬iA

(⇒ ¬i)
Γ ⇒ ∆, A

¬iA,Γ ⇒ ∆
(¬i ⇒)

Γ, A ⇒ ∆

Γ ⇒ ¬cA,∆
(⇒ ¬c)

Γ ⇒ ∆, A

¬cA,Γ ⇒ ∆
(¬c ⇒)

.

Proposition 3. For any Γ ∪∆ ⊆ Form, Γ ⇒ ∆ is derivable in G(C+ J) iff Γ |= ∆ holds.

Proposition 4. If Γ ⇒ ∆ is derivable in G(C + J), then Γ ⇒ ∆ is derivable in G−(C + J), where
G−(C+ J) is the calculus obtained by removing the rule (Cut) from G(C+ J).

By Proposition 4, the subformula property is obtained, which ensures the calculus is a conservative
extension of both intuitionistic and classical propositional logic.

3
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3 Craig Interpolation
In this section, we establishes two types of Craig interpolation theorem for G(C + J), based on Mae-
hara’s partition argument in [9]. This argument is originally for classical sequent calculus LK, and is
dependent on the fact that the cut elimination holds in the calculus. Since cut elimination holds also in
G(C + J), as is guaranteed by Proposition 4, this method can be employed. In the following part of
this section, Prop(D) denotes the set of all propositional variables in a formula D. And if Γ is a finite
multiset of formulas, we define Prop(Γ) =

⋃
{Prop(D) | D ∈ Γ}. Especially, we have Prop(⊥) = ∅.

We call ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ a partition of a sequent Γ ⇒ ∆, if Γ is Γ1,Γ2 and ∆ is ∆1,∆2. Let us
say that C is an interpolant of ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ if Γ1 ⇒ ∆1, C and C,Γ2 ⇒ ∆2 are derivable
and Prop(C) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

Although the main idea of giving G(C+J) is adding classical implication to intuitionistic logic, our
proof is similar to that in classical logic. For establishing the Craig interpolation theorem for mLJ, we
cannot employ the notion of partition of the form ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩. This is because we cannot find
an interpolant for ⟨(∅ : A); (A : ∅)⟩ as noted in [10]. Therefore, in order to show the theorem for mLJ,
the form of a partition should be restricted to ⟨(Γ1 : ∅); (Γ2 : ∆)⟩. However, this restriction makes it
possible to show neither of the two types of theorem in G(C + J). Considering this situation, it seems
difficult to establish the theorem for G(C+J). However, the classical negation (or implication) enables
us to use partitions of the form ⟨(Γ1 : ∆1); (Γ2 : ∆2)⟩ without any restriction to calculate an interpolant
by Maehara method. This fact about the way of showing Craig interpolation theorem implies that C+ J
can be regarded as the logic obtained by adding the special (intuitionistic) implication to classical logic2.

Lemma 1. Suppose that Γ ⇒ ∆ is derivable in G(C + J). Then for any partition ⟨(Γ1 : ∆1); (Γ2 :
∆2)⟩ of the sequent, there exits an interpolant C in G(C + J), i.e., such that both Γ1 ⇒ ∆1, C and
C,Γ2 ⇒ ∆2 are also derivable in G(C+ J), and Prop(C) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

With Lemma 1, which is the core of the proof, we can easily show the following two types of Craig
interpolation theorem.

Theorem 1. (Intuitionistic Craig Interpolation Theorem of G(C + J)). If ⇒ A →i B is derivable in
G(C + J), then there exists a formula C such that ⇒ A →i C and ⇒ C →i B are also derivable in
G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

Theorem 2. (Classical Craig Interpolation Theorem of G(C + J)). If ⇒ A →c B is derivable in
G(C + J), then there exists a formula C such that ⇒ A →c C and ⇒ C →c B are also derivable in
G(C+ J) and that Prop(C) ⊆ Prop(A) ∩ Prop(B).

4 Further Direction
In [15], the first-order expansion G(FOC+ J) of G(C + J) can be given by adding classical univer-
sal quantifier to first-order multi-succedent intuitionistic sequent calculus mLJ, although the similar
restriction on the right rule for the intuitionistic universal quantifier is needed. Whether Craig interpo-
lation holds in this expansion is an open question, which deserves being inquired.
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Quantum logic (QL) has been studied to handle strange propositions of
quantum physics. In particular, logic based on orthomodular lattices, namely,
orthomodular logic (OML), has been studied since 1936, proposed by Birkhoff
and Von Neumann [10]. An orthomodular lattice is related to the closed
subspaces of a Hilbert space, which is a state space of a particle in quantum
physics. Instead of these lattices, the Kripke model (possible world model)
of OML can be used, which is called the orthomodular-model (OM-model)
[11] [12]. Intuitively, each possible world of an OM-model expresses a one-
dimensional subspace of a Hilbert space, corresponding to a quantum state.

In quantum mechanics, due to the uncertainty principle, exact values can-
not be simultaneously obtained for a specific set of physical quantities (for
example, momentum and position along an axis). This statistical property
is the nature of the states of the object and exist independently of an ex-
perimenter’s knowledge. OML handles the most basic part of this strange
nature of states.

To treat an agent’s knowledge in quantum mechanics, some studies com-
bine epistemic logic (EL) with QL. EL is a field of modal logic that treats
the proposition of an agent’s knowledge. In the Kripke model of EL, the
indistinguishability of states is used to express knowledges. That is, if a
formula ϕ is true at all states that are indistinguishable from the current
state for agent i, then agent i knows that ϕ is true. Furthermore, dynamic
EL (DEL) has been studied to handle the transitions of knowledge [15]. In
general, public announcement logic (PAL) is treated as the most basic and
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simple logic in DEL. Basic PAL includes only two types of modal symbols:
the symbols for knowledge Ki of individual agents and the symbol [ ] for
public announcements. [ϕ]ψ can be read as“ After a public announcement
ϕ, ψ is true.”

Ref [8] and [9] can be cited as one of the studies of logic that deal with
the concept of knowledge with quantum physics. In these studies, the models
which incorporate specific quantum information concepts were used. Ref [2]
and [3] can be cited as the studies of knowledge with more general concepts
of quantum physics. In these studies, similar to EL, knowledge was expressed
using the indistinguishability of states.

To discuss the general change of knowledges due to the procurement of
informations, other concepts have to be introduced and the field of dynamic
epistemic QL (DEQL) has to be developed. In [4], quantum test frame is
introduced as a part of the study of the dynamic logic of test (DLT). DLT
is a logic for dealing with general changes in knowledge due to information
obtained by testing. Quantum test frame is based on the frame for DLT
and the frame for dynamic QL (DQL) [5] [6] [7]. DQL uses modal symbols
for several types of transitions of quantum states, such as unitary evolutions
and projections. An important aspect of quantum physics is the change of
state due to measurement. In quantum physics, when a physical quantity
is observed, the state is projected to an eigenstate of the physical quantity.
That is, the state of the particle itself changes depending on the obtained
information. In (classical) EL, if x(ϕ)y, then x = y; where x and y denote
states and (ϕ) is the relation for information ϕ. Reflecting the nature of
quantum physics, in quantum test frame, this property is not true [5] [6] [7].

As mentioned above, the transition of knowledge in quantum mechanics
has been analyzed in some directions. However, some problems remain.

1. These models in previous studies are little complicated because these
models introduce almost every modal element related to quantum me-
chanics. Such a model is also needed, but a somewhat simple and
abstracted model that leaves only the important notions is also useful
to analyze specific feature of knowledge in quantum mechanics.

2. As the models and symbols are complicated, constructing a deduction
system for this types of logic is somewhat complicated task because we
have to deal with the mutual consistency of many conditions. Actually,
deduction systems for DEQL have not been analyzed much.
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Therefore, in this study, as a basis for solving these problems, we construct
new logic and models for the transition of knowledge in quantum mechanics
that is simpler than previous studies, while retaining the essence of these
studies. Furthermore, we construct a deduction system that holds soundness
and completeness for those new models. Because of these purposes, herein,
we mainly focus on mathematical and logical analysis, rather than quantum
mechanical analysis.

We construct dynamic epistemic orthomodular logic (DEOML) by com-
bining the frames and models of OML and PAL, and we simply use a combi-
nation of logical symbols for OML and PAL. The meaning of [ϕ] in DEOML
is different from that in PAL. In DEOML( and in quantum test frames), [ϕ]
denotes the action that the agent obtains the information ϕ by observing a
state of the particle. However, they are the same in terms of“ obtaining
the information that ϕ is true.”Therefore, in fact, the logical nature for this
symbol are almost the same in each logic. Moreover, due to the simplicity of
DEOML, this similarity is used to prove useful theorem (which is described
in last paragraph) similar to PAL, which is difficult to established in the
models in previous studies.

OML is adopted instead of DQL for the foundation of logic because of
the following advantages.

1. Although OML is not a modal logic, OM-models implicitly include the
concept of the modality of projection as binary relations that satis-
fies some important conditions [17]. Therefore, OML can handle the
concept of projection while being a simpler model than DQL, which
include the notion of of projections explicitly.

2. OML does not include the other dynamic concepts of quantum mechan-
ics, such as unitary evolutions. However, the most important strange
properties of the agent’s knowledge that appear in quantum mechanics
are related to projective observations. Therefore, the important prop-
erties can be analyzed as long as the concept of projection is included
in the logic.

3. Different from DQL, deduction systems for OML are well argued in
previous studies [13] [14] [16] [18] [19], and we can use them directly to
construct a deduction system for DEOML.

We construct a sequent calculus type deduction system for DEOML and
prove the soundness and completeness theorem with respect to new models.
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Sequent calculus is suitable for this study because it is compatible with OML
and modal logics [13] [18] [19]. Hilbert-style systems for OML have also
been studied [14] [16]. However, they contain unique symbols for creating
the Hilbert-style system, which are not suitable for combination with other
(modal) symbols.

In this new logic, two types of formulae are used: a quantum formula
(q-formula), and a general formula (g-formula).

q-formula A ::= p | ⊥ |∼ A | A∧A

g-formula ϕ ::= A | ¬ϕ | ϕ∧ϕ | Kϕ | [A]ϕ

The q-formulae are included in g-formulae. The q-formulae are correspond to
the propositions in OML. That is, q-formulae are used to express the propo-
sitions of quantum mechanics. g-formulae are used to express modal notions
including knowledge and change of informations. We use the definition that
only q-formulae can be placed in the modal symbol [ ] because we deal with
the situation where the agent gets information about the particles in an ex-
periment. By using this condition, the same concept of projections [ ] defined
in advanced OM-model [17] can be used.

In this study, similar to [1] [4], we focus on the situations where only one
agent is present. The main reason for this restriction is that models for QL
which are currently configured are not very suitable for dealing with product
Hilbert spaces, which represent state spaces of multiple particles and agents.
Therefore, a study of logic that includes more than one agent or more than
one particle in binary relational model is somehow different from this study.

It is shown that even with these restricted definition, important parts
of knowledge in quantum mechanics still can be expressed. For example,
Kp → [A]Kp is valid in PAL but not always valid in models of DEOML. In-
tuitively, this is because an announcement may change an agent’s knowledge
but not change the environment in PAL. In contrast, as mentioned earlier,
in quantum mechanics, when we obtain information from the environment
(particles), the state of the environment may change because of projections.

The main contributions of this study are as follows.

A novel model for DEQL that can analyze the transitions of knowledge is
constructed, and it is simpler than the models in previous studies. The
method of configuration of the model is also completely different from
the previous studies.
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Using the new model, we construct a new logic DEOML.

Some similarity and differences between PAL and DEOML from the mathe-
matical logic perspective are analyzed. That is, following formulae are
valid in DEOML.

[A]B ↔∼ A ⊔ (A ∧B))

[A](ϕ ∧ ψ) ↔ ([A]ϕ ∧ [A]ψ)

[A]¬ϕ↔ (¬ ∼ A→ ¬[A]ϕ)
[A]Kϕ↔ (¬ ∼ A→ K[A]ϕ)

Deduction system for DEOML, which is sound and complete with respect
to these new models are established. This results of deduction system
for DEQL is completely new.
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Epistemic Logic normally discourses on knowledge, belief, and related con-
cepts. We here study ignorance instead. With the help of the µ-calculus, we
analyze the degrees of ignorance in which an agent doesn’t know whether or
not a given proposition is true. Building on the study by Stalnaker [14], we
argue that logics “closer” to S4.2 allow greater degrees of ignorance, compared
to logics “closer” to S5.

We consider Epistemic Logic with the modal operators K (for knowledge)
and B (for belief). We will focus on the case where there is only one agent,
following Hintikka [7], Lenzen [8], and Stalnaker [14]. We suppose that K
satisfies (at least) S4 and B satisfies KD45. By belief, we mean strong belief, and
suppose that the agent’s beliefs has no contradiction and they have introspection
about their own beliefs:

Kϕ→ Bϕ,

Bϕ→ KBϕ, and

¬Bϕ→ K¬Bϕ.

Lenzen [8] showed that the interaction axioms above imply that Bϕ ↔ K̂Kϕ,
that is, belief can be defined by knowledge. In practice, we consider B as a
defined modality. Lenzen’s proof also implies that K satisfies S4.2.

The concept of ignorance was also studied by van der Hoek and Lomuscio
[6]. They defined a modal operator for ignorance by

Iϕ :↔ ¬Kϕ ∧ ¬K¬ϕ.

They also define a logic for ignorance Ig and prove that it is sound and complete
over the class of all frames. Fine [5] studied the nth-order ignorance Inϕ, where
In+1ϕ :↔ I(Inϕ) and I0ϕ :↔ ϕ. In particular, it is shown that I2ϕ is equivalent
to the so-called Rumsfeld ignorance “the unknown unknown”, Iϕ∧¬KIϕ. Fine
also showed that, for any ϕ, ¬KI2ϕ is valid on any frame of S4.2. Therefore, the
knowledge of second-order ignorance is unobtainable. Note that the ignorance
modality I is a particular case of the contingency modality ∇ (see Montgomery
and Routley [10]). ∇ is defined by

∇ϕ :↔ ♦ϕ ∧ ♦¬ϕ.
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We build on Stalnaker’s [14] analysis and consider the logics S4.2, S4.3,
S4.3.2, S4.4, and S5 for knowledge. They are defined using the axioms in Table
1 with the necessitation rule. Aucher [2] characterized these logics by axioms
relating knowledge and belief/conditional belief similar to Lenzen’s characteri-
zation of S4.2.

Axiom Name Axiom Frame conditions
K K(ϕ→ ψ)→ (Kϕ→ Kψ) (no condition)

D Kϕ→ K̂ϕ Serial
T Kϕ→ ϕ Reflexive
4 Kϕ→ KKϕ Transitive

5 K̂ϕ→ KK̂ϕ Euclidean

.2 K̂Kϕ→ KK̂ϕ Convergent

.3 K(Kϕ→ ψ) ∨K(Kψ → ϕ) Weakly Connected

.3.2 (K̂ϕ ∧ K̂Kψ)→ K(K̂ϕ ∨ ψ) Semi-Euclidean

.4 (ϕ ∧ K̂Kϕ)→ Kϕ (no particular name)

Table 1: Modal axioms for K.

The (modal) µ-calculus is obtained by adding to modal logic the fixed-point
operators µ and ν, for least and greatest fixed-points. The µ-formulas are gen-
erated by the grammar

ϕ := P | ¬P | X | ϕ ∧ ϕ | Kϕ | µX.ϕ | νX.ϕ.

We denote the dual operators of K and B by K̂ and B̂. For reasons that will
become clear later, we consider only alternation-free formulas, that is, formulas
with no nested alternation of µ and ν operators. More rigorously, a µ-formula
is alternation-free if it has no subformula of the form µX.ϕ (or νX.ϕ) such that
ϕ has a subformula νY.ψ (or µY.ψ) with a free occurrence of X in ψ.

The relational semantics for the µ-calculus is defined as follows. Given a
model M and a µ-formula ϕ, we will define ‖ϕ‖M to be the set of worlds w
where ϕ holds. Propositional operators and modal operators are treated as
usual. For fixed-point operators, letting Γϕ(X) = ‖ϕ(X)‖M , we have

‖µX.ϕ(X)‖M is the least fixed point of Γϕ, and

‖νX.ϕ(X)‖M is the greatest fixed point of Γϕ.

For an example of the use of fixed-point operators, suppose we have modal-
ity E for “everyone knows”. Then a formula ϕ is common knowledge iff the
following formula holds:

νX.(ϕ ∧ EX).

That is, ϕ is common knowledge iff it is true, everybody knows that ϕ is true,
everybody knows that “everybody knows that ϕ is true”, and so on.

The operators µ and ν induce a (syntactical) hierarchy of the µ-formulas,
measuring the entanglement of least and greatest fixed-point operators. Brad-
field [4] showed that, in general, the hierarchy is strict: for all natural number
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n there is a formula with alternation depth n+ 1 which is not equivalent to any
formula of alteration depth n. But this strictness may fail in a restricted class
of models. In fact, Alberucci and Facchini [1] showed that on a frame satisfy-
ing S4, the hierarchy collapses to its alternation-free fragment: every µ-formula
is equivalent to an alternation-free µ-formula. This justifies our restriction to
alternation-free formulas in the definition of our µ-calculus. They also showed
that the hierarchy collapses to modal logic on frames of S5: every µ-formula is
equivalent to a modal formula. Also note that we can define a weak alterna-
tion hierarchy on the alternation-free fragment. The authors have shown the
strictness of the weak alternation hierarchy on recursive frames [11].

In [12], the authors show that the alternation hierarchy collapses to its
alternation-free fragment over frames of

S4.2 and S4.3;

and collapses to modal logic over frames of

S4.3.2,S4.4 and KD45.

Therefore there must be an (alternation-free) formula ϕ which is not equivalent
to any modal formula over S4.2 and S4.3; but is equivalent to a modal formula
over S4.3.2, S4.4 and KD45. While this abstract uses only relational seman-
tics, the collapses of the alternation hierarchy can be transferred to topological
semantics by a result of Baltag et al. [3].

We analyze a formula which is not equivalent to any modal formula over
S4.2 and S4.3. Let ϕ be any µ-formula, and define

αϕ(X) := K̂(ϕ ∧X) ∧ K̂(¬ϕ ∧X).

We study α∞
ϕ := νX.αϕ and its approximants α1

ϕ := αϕ(T ), αn+1
ϕ := αϕ(αn

ϕ);
they will be used to measure the agent’s degree of ignorance with respect to
ϕ. Each αi

ϕ will represent a degree of ignorance. Over S4.2, any degree implies
the weaker degrees but the converse may not hold. That is, if i, j ∈ N ∪ {∞}
and i < j, then αj

ϕ implies αi
ϕ; and the converse doesn’t hold as αi

ϕ ∧ ¬αj
ϕ is

satisfiable. Therefore we have, in general, infinitely many degrees of ignorance.
Our first degree of ignorance α1

ϕ is equivalent to Iϕ, and all the αi
ϕ can be

thought of as generalizations of Iϕ.
Van der Hoek and Lomuscio [6] state that the ignorance modality I is not

intended to capture degrees of ignorance, while our αi
ϕ’s are intended to do so.

Furthermore, Kαi
ϕ is satisfiable for any i ∈ N ∪ {∞}. Therefore the αi

ϕ are
different from second-order ignorance I2ϕ, and not obtainable by iterations of
I.

If we change our settings, we may have finitely many degrees of ignorance.
Consider S4.4, the logic of knowledge as true belief. We can show here that
α1
ϕ∧¬α2

ϕ is equivalent to the agent having a false belief and that α2
ϕ is equivalent

to α∞
ϕ . That is, we have only two non-equivalent degrees of ignorance: α1

ϕ, where
the agent’s belief is false; and α2

ϕ, where the agent believes neither ϕ nor ¬ϕ.
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The same analysis holds for S4.3.2, which has the same two degrees. This logic
is used, for example, in [13].

In S5, the standard logic for multi-agent epistemic logic, we have only one
degree of ignorance. In this setting, α1

ϕ is equivalent to α∞
ϕ . We also have that

belief is equivalent to knowledge, Bϕ↔ Kϕ, so the agent has no wrong beliefs,
and being ignorant of ϕ also means that they believe neither ϕ nor ¬ϕ.

Now consider the interpretation of αi
ϕ∧¬αi+1

ϕ over S4.2 and S4.3. S4.2 is the
logic of knowledge according to Lenzen [8] and Stalnaker [14]. S4.3 is Lehrer and
Paxon’s undefeated justified true belief [9]. Here, α1

ϕ ∧¬α2
ϕ is equivalent to the

agent’s belief being false and the agent knowing whether ϕ holds in every world
other than the real world. Likewise, α2

ϕ∧¬α3
ϕ holds exactly when the agent has

a true belief but considers it possible that their belief is false. Symbolically,

α2
ϕ ∧ ¬α3

ϕ ≡ [ϕ ∧Bϕ ∧ K̂(¬ϕ ∧Bϕ)] ∨ [¬ϕ ∧B¬ϕ ∧ K̂(ϕ ∧B¬ϕ)].

This analysis can be extended to other αi
ϕ ∧ ¬αi+1

ϕ to show that each degree of
ignorance expresses a higher level of the agent’s self-doubt.

Still in S4.2 and S4.3, note that, for n ∈ N, αn
ϕ implies the agent has a belief

(which may be true or false) and the agent not having a belief implies α∞
ϕ . In

other words, having no belief implies a high degree of ignorance, but a high
degree of ignorance does not deny the agent having a belief.

From the point of view of our degrees of ignorance, S4.3 and S4.3.2 are very
different: S4.3 has infinitely many degrees of ignorance; while S4.3.2 has only
two degrees. This contrasts with Stalnaker’s critics of S4.3 and S4.3.2, which
argues that in both logics false belief can deny knowledge: in S4.3 a false belief
can deny some knowledge the agent may be justified in having; and in S4.3.2 a
false belief denies all non-trivial knowledge.

At last, we can do a similar analysis to belief, using

δϕ(X) := B̂(ϕ ∧X) ∧ B̂(¬ϕ ∧X),

a belief variant of αϕ(X). Define δ1ϕ := δϕ(>), δn+1
ϕ := δϕ(δnϕ) and δ∞ =

νX.δ(X). Then, for i ∈ N ∪ {∞}, δ1ϕ is equivalent to δiϕ over KD45, similar to
the case where knowledge satisfies S5. Therefore we can only define one degree
of disbelief by our approach.
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The Creation and Change of Social Networks

Sonja Smets

University of Amsterdam

Recently, epistemic-social phenomena have received more attention from the logic
community, analyzing peer pressure, studying informational cascades, inspecting priority-
based peer influence, modeling diffusion and prediction, and examining reflective so-
cial influence. In this presentation, I will contribute to this line of work and focus in
particular on the logical features of social group creation. I pay attention to the mech-
anisms which indicate when agents can form a team based on the correspondence in
their set of features (behavior, opinions, etc.). Our basic approach uses a semi-metric
on the set of agents, which is used to construct a network topology. This structure is
then extended with epistemic features to represent the agents’ epistemic states, allow-
ing us to explore group-creation alternatives where what matters is not only the agent’s
differences but also what they know about them. The logical settings in this work make
use of the techniques of dynamic epistemic logic to represent group-creation actions,
to define new languages in order to describe their effects, and to provide sound and
complete axiom systems. This talk is based on joint work with Fernando Velazquez
Quesada.
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Learning what Others Know

Alexandru Baltag

University of Amsterdam

I present recent work on modelling scenarios in which agents are given (or gain)
access to all the relevant information possessed by some other agents (including infor-
mation of a non-propositional nature, such as data, passwords etc). Modelling such
scenarios requires us to extend the framework of epistemic logics to one in which we
abstract away from specific announcements. In order to do this, I introduce a general
framework for such informational events, that subsumes actions such as sharing all
you know with a group or individual, giving one access to some folder or database, ex-
changing all relevant information within a closed subgroup, hacking a database without
the owners knowledge, etc. We formalize their effect, i.e. we express the state of affairs
in which one agent (or group) has epistemic superiority over another agent/group, us-
ing comparative epistemic assertions (the extend to groups the individual comparative
formulas considered in [5]). Another ingredient is a new modal operator for common
distributed knowledge, that combines features of both common knowledge and dis-
tributed knowledge, and characterizes situations in which common knowledge can be
gained in a larger group of agents (formed of a number of subgroups) by communica-
tion only within each of the subgroups. This is joint work with Sonja Smets [1], though
I position it in the context of other related work [2-8].

———————————-
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(eds.), LPAR23 proceedings of the International Conference on Logic for Program-
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