Logic of Agent Communication

Satoshi Tojo (Japan Advanced Institute of Science and Technology)

LORI VI (Hokkaido University, Sapporo, Japan 2017)

1 <u>Who knows what at which time?</u>

Let us consider communication among multi-agents.

George de la Tour: Le Tricheur à l'as de carreau

In the above picture, we can see many aspects of belief change of agents triggered by an informing action by others.

- Public announcement
- Liar
- Belief revision
- Reliability of news source
- Mutual belief
- Method of communication, *i.e.*, channel

How can we formalize this (or more troublesome) situation in logic, in an efficient, scalable and reliable computation system?

2 Doxastic Logic with Channel

Let G be a set of agents and Prop be a set of propositional variables. The syntax of PDL-extension of dynamic doxastic logic with channel is defined by simultaneous induction on a program term π and a formula φ :

$$\begin{split} \pi &::= \mathsf{R}_a \mid (\pi \cup \pi) \mid (\pi; \pi) \mid \varphi? \mid \varphi\downarrow_b^a \quad (a \in G) \\ \varphi &::= p \mid \mathsf{c}_{ab} \mid \neg \varphi \mid \varphi \lor \varphi \mid [\pi] \varphi \quad (p \in \mathsf{Prop}, \, a, b \in G) \end{split}$$

- c_{ab} : 'there is a channel from agent a to b.'
- $[\mathsf{R}_a]\varphi$: 'agent *a* believes that φ holds.'
- $(\pi \cup \pi')$: 'do π or π' , non-deterministically.'

- $(\pi; \pi')$: 'do π followed by π' .'
- φ ?: 'proceed if φ true, else fail.'
- $[\varphi \downarrow_b^a] \psi$: 'after agent *a* informs agent *b* of message φ via channel, ψ .'

Given a model $\mathfrak{M} = (W, (R_a)_{a \in G}, (C_{ab})_{a,b \in G}, V)$, the semantics is defined as follows:

$$\begin{split} & \llbracket \mathbf{R}_a \rrbracket_{\mathfrak{M}} & := R_a, \\ & \llbracket \pi \cup \pi' \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \cup \llbracket \pi' \rrbracket_{\mathfrak{M}}, \\ & \llbracket \pi; \pi' \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}}, \\ & \llbracket \varphi ? \rrbracket_{\mathfrak{M}} & := \llbracket \pi \rrbracket_{\mathfrak{M}} \circ \llbracket \pi' \rrbracket_{\mathfrak{M}}, \\ & \llbracket \varphi ? \rrbracket_{\mathfrak{M}} & := \{(w, v) \mid w = v \text{ and } w \in \llbracket \varphi \rrbracket_{\mathfrak{M}} \}, \\ & \llbracket p \rrbracket_{\mathfrak{M}} & := \{(w, v) \mid w = v \text{ and } w \in \llbracket \varphi \rrbracket_{\mathfrak{M}} \}, \\ & \llbracket p \rrbracket_{\mathfrak{M}} & := C_{ab}, \\ & \llbracket [\pi] \varphi \rrbracket_{\mathfrak{M}} & := \{w \in W \mid \llbracket \pi \rrbracket_{\mathfrak{M}}(w) \subseteq \llbracket \varphi \rrbracket_{\mathfrak{M}} \}, \end{split}$$

where $\llbracket [\mathsf{R}_a] \varphi \rrbracket_{\mathfrak{M}}$ is the truth set $\{ w \in W \mid \mathfrak{M}, w \models \varphi \}.$

As for the semantics of $[\varphi \downarrow_b^a]\psi$, if agent *a* resides in $[\![\varphi]\!]$ and when there is a channel from *a* to *b*, *b* believes that ψ , otherwise *b* does not change his/her beliefs. That is, if $a \neq b$,

 $R'_{b} := (R_{b} \cap (\llbracket \mathsf{c}_{ab} \land \mathsf{B}_{a} \, \varphi \rrbracket \times \llbracket \varphi \rrbracket)) \cup (R_{b} \cap (\llbracket \neg (\mathsf{c}_{ab} \land \mathsf{B}_{a} \, \varphi) \rrbracket \times W)),$

and otherwise $R'_b := R_b$. In PDL-format,

$$\pi_b := ((\mathsf{c}_{ab} \land \mathsf{B}_a \,\varphi)?; \mathsf{R}_b; \varphi?) \cup (\neg (\mathsf{c}_{ab} \land \mathsf{B}_a \,\varphi)?; \mathsf{R}_b)$$

3 Matrix Representation

Based on [Fitting, 2003], a matrix representation of accessibility relation is defined by $R^M(i, j) = 1$ if $(w_i, w_j) \in R$, otherwise 0. The valuation is $V(p)^M(i) = 1$ if $w_i \in V(p)$, otherwise 0. Thus, we can reformulate the above PDL-format of the semantics into a matrix representation as follows: If a = b, $R_b^{\prime M} = R_b^M$. If $a \neq b$, we obtain:

$$R_b^{\prime M} = \llbracket (\mathsf{c}_{ab} \land \mathsf{B}_a \varphi)? \rrbracket^M R_b^M \llbracket \varphi? \rrbracket^M + \llbracket \neg (\mathsf{c}_{ab} \land \mathsf{B}_a \varphi)? \rrbracket^M R_b^M.$$

Example When agent a sends a piece of information p to b, the first part of a matrix calculation of R_b becomes:

$$\begin{bmatrix} (\mathsf{c}_{ab} \land \mathsf{B}_{a} \, p)? \end{bmatrix}^{M} R_{b}^{M} \llbracket p? \rrbracket^{M} = \llbracket \mathsf{c}_{ab}? \rrbracket^{M} \llbracket \mathsf{B}_{a} \, p? \rrbracket^{M} R_{b}^{M} \llbracket p? \rrbracket^{M} \\ = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

The result shows that b comes to believe that p. In order to get the final solution, we also need to calculate the rest of the part, *i.e.*, $[\neg (c_{ab} \land B_a \varphi)?]^M R_b^M$, and to combine the both results.

