<<テクニカルレポート>>

測定時間間隔によるビート周波数測定限界について(リアルモード)

株式会社フォトンプローブ

2020年1月20日

光へテロダイン変位計HV400の測定において、リアルモードでは測定時間間隔を変えることができる。この変更はユーザの選択項目であるが、測定時間間隔を変更すると、測定可能なビート周波数範囲の下限域があることを実験により確かめた。その限界につき、実験結果を示しながら、解説する。

(1) リアルモードでの設定可能な測定時間間隔

 $1\,\mathrm{m\,s}$ 、 $2\,\mathrm{m\,s}$ 、 $5\,\mathrm{m\,s}$ 、 $10\,\mathrm{m\,s}$ 、 $20\,\mathrm{m\,s}$ 、 $50\,\mathrm{m\,s}$ 、 $100\,\mathrm{m\,s}$ 、 $200\,\mathrm{m\,s}$ 、 $500\,\mathrm{m\,s}$ 、 $1\,\mathrm{s}$ 、 $2\,\mathrm{s}$ 、5, $10\,\mathrm{s}$ 、013項目である。ダイナミックレンジで $4\,\mathrm{f}$ タである。

(2) 理論的解説

理論的には、計測データの測定時間間隔(Δt時間間隔)の変動では

$$h L = \frac{j}{2} h 2h 2$$

の変動量が発生する。(ただし、この式は Δf が小さい場合に限る)。ここで、 λ はレーザ波長で、 Δf はビート周波数である。

したがって、 Δf 、 Δt 、が一定ならば ΔL は一定のはずである。この一定値からの測定値のずれは、HV 400プログラムにおける、データ処理精度に依存している。この精度は Δf 、 Δt の大小に依存しているので、ビート周波数のすべてを測定可能ではなくなる。特に重要な点は以下の点である。" Δt の時間中すべてにおいて測定($1 \mu s$ 毎にデータを算出)しているわけではなく、 Δt に依存した平均化対象時間(Δtr)があり($\Delta t > \Delta tr$)、その Δtr 間は $1 \mu s$ 毎にデータを求めるが、その残りの $\Delta t - \Delta tr$ 時間は、測定しない"。したがって、実質の測定時間間隔は $\Delta t - \Delta tr$ 、(平均化しているので、結果的には測定時間間隔= Δt)となる。 $1 \mu s$ 毎のデータ取得と Δtr 、が測定可能な高周波側(Δt fmax)を決める。(基本的に $1 \mu s$ の測定限界 1 MHz が高周波側の制約値となる)。一方、低周波側(Δt fmin)、は実験により求めるよりない。理屈ならば、限界がないように思えるが、測定精度の限界で決まってしまう。そこで、本実験はその精度の限界を求めることを目的とする。

(3) 実験および解析

測定時間間隔 Δt において、測定時間を 20 分から 24 時間までの範囲で行った。

(例えば、 Δt =100ms 条件では、20分で12000点の連続計測、24時間では864000点の連続計測である)。 この連続計測の間、ビート周波数は一定である。実験および解析内容は以下の通り

- ① Δ t の変化による変動量 Δ L(n)とその変動量の平均値 AVE(Δ L)及び標準偏差 DEV(Δ L)を求める。N は測定点数を示す(12000 点の連続計測では n=1,2,3,....12000)相対標準偏差 RDEV(Δ L)=DEV(Δ L)/AVE(Δ L)、と Δ f の関係をグラフ化する。相対標準偏差=0.3($\log(0.3)$ =-0.528)程度を限界と判断する。
- ② 測定変動量 \underline{o} 平均値 AVE(Δ L)を用いて、理論式を用いて波長を算出すると真値からずれるであろう。 この算出された波長を計算波長と呼んで真値の波長とは区別する。このずれは様々な要因があるが、

トータルの特性として利用できないずれとなる。そこで、この計算波長と Δf の関係より、その利用可能な限界を求める。632.81642nm が標準状態でのレーザ波長である。いわゆる物差しである。上記ずれはこの物差しの長さが異なることを意味する。物差しが 0.1nm 異なっている場合に、測定対象物の変動が 1mm であった場合、158nm の誤差を生む。誤差率は 0.016%、許容できる限界と判断する。

(4) 実験結果

 $\Delta t \, b \, \Delta f \, e$ 変動させて、測定時間は 40 分を基本として求めた。

(4-1) ビート周波数の算出と正負関係及び $\Delta t = 100 ms$ での解析

ビート周波数=CH1の周波数-CH2の周波数

で与えられるので、中心周波数からのずれ Δ f1、 Δ f2 の正負により、 Δ L の正負を含めると簡単に次の 4 つのパターンがある。(正確に言えば、無限個のパターンがあるが、実験では4パターンとした)

ΔL値		Δ f1	Δ f2	ビート周波数
$\Delta\mathrm{L}$	(>0)	Δf1 (>0)	0	$\Delta \mathrm{f1}$
$\Delta\mathrm{L}$	(>0)	0	$\Delta f2 = -\Delta f1$ (<0)	$\Delta \mathrm{f1}$
Δ L'=— Δ I	. (<0)	—Δf1 (<0)	0	$-\Delta f1$
Δ L'=— Δ I	. (<0)	0	$\Delta f2 = \Delta f1$ (>0)	$-\Delta f1$

(注意;周波数ずれが大きくなると、 Δf による変動量 ΔL と、 $-\Delta f$ による変動量 ΔL は、その絶対値が異なるが、周波数ずれを小さい領域で行った実験のため、絶対値は等しいと推測している)

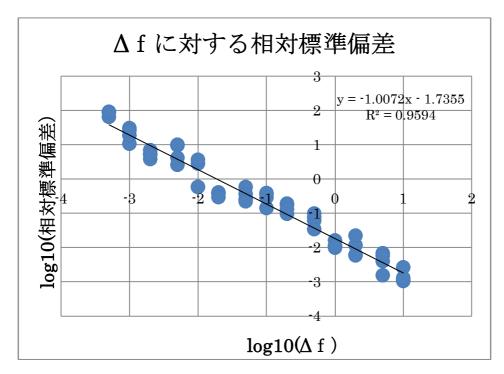


図 1 $\Delta t = 100 \text{ms}$ での Δf と相対標準偏差の関係

 $\Delta t = 100 \text{ms}$ の場合の4つのパターンを全て表記した結果を図1に示す。(Δf の単位は[Hz]である)。

 Δf は 10 Hz から、0.5 mHz まで変動させた。 4 つのパターンでばらつきはあるものの、概ね、同じ相対標準偏差と判断できる。これは、HV40001CH22CHが対称的に動作していることを表している。グラフの傾きが、概略"1"であることはビート周波数が1桁変動すると、相対標準偏差も1桁変動することを表しており、変位量算出の基本となるデータ処理において、ノイズ発生がビート周波数に対して線形に発生していることを表している。

下限周波数の算出の際の第1の基準

"相対標準偏差=0.3 (log(0.3)=-0.528) 程度を限界と判断する"

を適用すると、 $\Delta f = 0.05$ Hz (対数値=-1.3)が測定限界と知れる。

第2の限界基準判断の計算波長を求める。 $\Delta t = 100 ms$ の場合の 4 つのパターンを全て表記した結果を図 2 に示す。

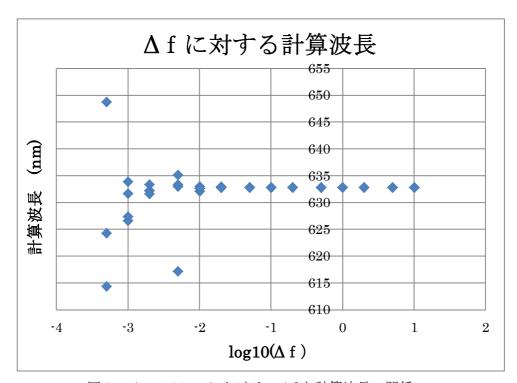


図 2 Δt =100ms における、 Δf と計算波長の関係

- ① 図の横軸が、-1.3 値以上では4つのパターンに全く変化が見られず、同一値を示していることが知れる。この値は、真値と等しい。それ故、-1.3 値以上では、測定において、正しい物差しが使われ、CH1 とCH2 の相違も見られないことが知れる。
- ② 図の横軸が、一1.7 値以下になると、ばらつきが出始め、物差しとしては使用できない値を示すようになる。

これより、 Δ t=100ms においては、 Δ f と計算波長の関係より、 Δ f=0.05Hz (対数値=-1.3)が測定限界と知れる。相対標準偏差からの結果と一致する。

以上まとめると、データのばらつきを示す相対標準偏差の解析からも、データ平均値の変動を示す計算波長からも、下限の測定ビート周波数は、0.05 Hz($\Delta t = 100 ms$ の場合)と言える。

Photon Probe, Inc. 2020.1

 $\Delta \text{ fmin}=0.05 \text{Hz}$ ($\Delta \text{ t}=100 \text{ms}$ case)

以上の解析を、他のΔtに対して行った

(4-2) $\Delta t=20$ ms での解析

相対標準偏差の Δf 依存性、計算波長の Δf 依存性を、それぞれ、図 3 、図 4 に示す。 結果として、

 Δ fmin=0.3Hz (Δ t=20ms case)

を得た。

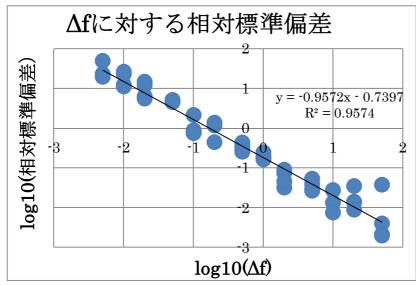


図3

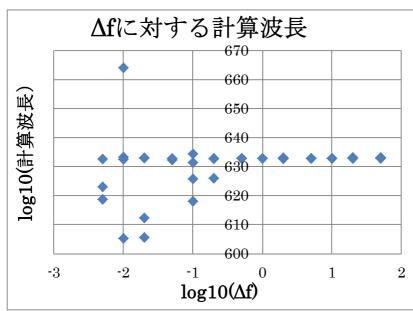


図 4

(4-3) $\Delta t=5$ ms での解析

相対標準偏差の Δf 依存性、計算波長の Δf 依存性を、それぞれ、図 5 、図 6 に示す。 結果として、次の値を得た。

 Δ fmin=2Hz (Δ t=5ms case)

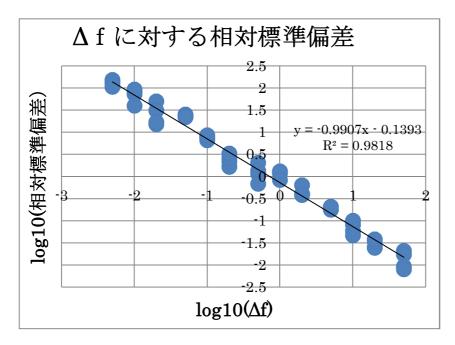


図 5

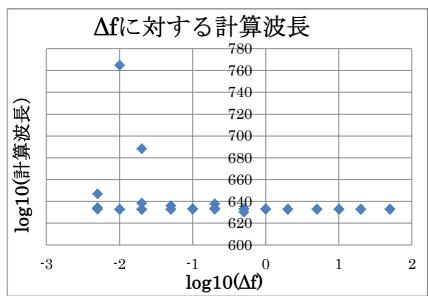
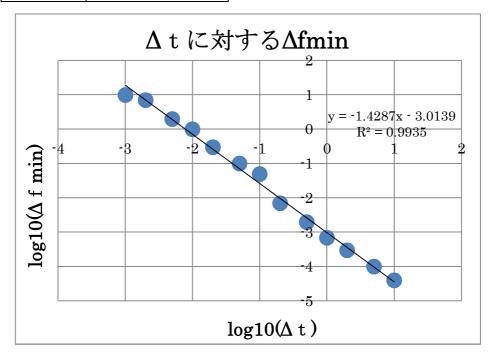


図 6

(4-4) 以上の解析を、すべての Δt に対して行った結果の $\Delta fmin$ の値を表 1 及び図 7 に示す。

Δt	Δ fmin
1ms	10Hz
2ms	7Hz
5ms	2Hz
10ms	1Hz
20ms	0.3Hz
50ms	0.1Hz
100ms	0.05Hz
200ms	0.007Hz=7mHz
500ms	2mHz

1s	0.7mHz
2s	0.3mHz
5s	0.1mHz
10s	$0.04 \mathrm{mHz}$ = $40\mu~\mathrm{Hz}$



線形性高く依存性がみられた。しかしながら、グラフの傾きが"1"ではない。測定時間間隔 Δt が 1桁変動すると、測定下限周波数 $\Delta f min$ は 1桁以上に変動する。測定下限が計算処理プログラムに おける精度から発生しているとすれば、 Δt の桁変動と $\Delta f min$ の桁変動は、相対標準偏差の変動と 同じで、同程度の桁変動になるはずである。 Δt が小さくなると、予測以上に低周波を観測できなく なることを表している。 Δt が小さくなると、平均化対象時間($\Delta t r$)と Δt の比($=\Delta t r/\Delta t$)の比 が大きくなるとともに、絶対値の $\Delta t r$ 値が減少(=平均化するデータ点数の減少)するために、データ演算する際により低周波成分を、観測するために必要な十分な精度を得られなくなったと判断

図 7

(5) まとめ

リアルモードでの測定時間間隔に対して、測定可能なビート周波数範囲が明確になった。

することができる。グラフにおける、 Δ t の単位は[s]、 Δ fmin の単位は[Hz]、である。

測定時間間隔 (Δt) が短いほど、測定可能なビート周波数下限値 ($\Delta fmin$) は高くなる(悪くなる)ことが知れた。この変動依存性は、単純な精度変動では説明できないが、概ね、 $\Delta t=100ms$ では、 $\Delta fmin=0.1Hz$ 、と知れた。

また、同時に、選択できる全ての測定時間間隔(1ms から 10s まで)に対して、 $\Delta fmin$ 、が定義できるほどに測定が可能であることも傍証した。さらに、連続測定において、24 時間連続計測が可能であることも知れた。今後は100 時間の連続計測のデータを取得してみたい。