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The transient characteristics in the damping oscillation of the regular sized cantilever were 

investigated experimentally with an optical heterodyne displacement meter having the 

resolutions of 1 nm, 1  s, and the sequence measurement points of 610 . The transient 

results had the peculiarity that neither the vibration frequency nor the damping factor was 

constant in the measuring time of about several tens of seconds, and that they depended on 

both the vibration amplitude and the cantilever length. By analyzing results, we obtained 

some experimental expressions for the frequency and the damping factor. The cantilever 

length dependence of the frequency was different largely from the Bernoulli-Euler (BE) 

theory. By introducing and discussing the equation modified the BE equation, we 

understood the differences with reasonability and consistency. These analyses pointed out 

that two factors defined in the equation was necessary to express the damping oscillation 

explicitly and consistently. 
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1. Introduction 
For a cantilever, a miniature or a micro size types have been investigated mainly. These 

types are developed to atomic force microscope etc. While, for a regular size type, several 

theories and experiments have been published1-8) but transient behaviors of the damping 

factor and the frequency have not been investigated circumstantially. These papers were 

discussed about the frequency characteristics with various techniques in which they 

developed with some static values of physical constants. However, they did not explain the 

damping factor and other characteristics because they did not examine under high precision 

measurement. The high precision analyses for the damping phenomena will need many 

transient data having a high signal/noise (S/N) ratio, a high time resolution, and a high 

displacement resolution. Though many transient measurements were shown9-11), the 

resolutions and/or the S/N ratio were not sufficient to practice the high precision analyses. 

   In general, for a transient measuring method of the vibration, the following optical 

measurement methods have been proposed, discussed, and reported experimentally, the 

heterodyne6,12-15), the homodyne17-18), the Doppler19-21), and the other ways. However, these 

measurements were not enough to discuss the damping factor and the frequency behaviors 

on the properties of recording points and space-time resolutions. Therefore, to analyze 

exactly the transient phenomenon, we can know that both of (1) large number of measuring 

points having small time interval which leads to high time resolution and (2) high 

displacement resolution need in the continuous measurement. 

In addition, to investigate the vibration characteristics, some papers have been reported 

in the two dimensional measurement12,19,22,23). However, the transient data for the damping 

factor and the frequency were not shown because they have not sufficient S/N ratio and 

resolutions. On the points of optical detections and data processing, these two-dimensional 

measurements did not detect with a sufficient optical power per measuring point. 

Therefore, for analyzing the transient behavior of the cantilever vibration, we judge that 

the two-dimensional measurement is unsuitable just to get data with high precision.  

To respond these requirements, we developed a displacement measuring instrument 

based on the optical heterodyne method24) to check transient phenomena clearly, which has 

enough characteristics of 1 s  time resolution, 1 nm displacement resolution, and 610

continuous measuring points to get high precision. By analyzing these measured data, we 
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discuss transient characteristics of the damping factor and the frequency in the cantilever 

motion. It is the purpose of this paper to study dynamical characteristics of the cantilever 

vibration experimentally and theoretically.  

Against a frequency’s transient behavior in the regular sized cantilever motion, none of 

report has been discussed in published papers or books including the Bernoulli-Euler 

theory25) (BE theory; as a clipped form).  

For the transient behaviors on the damping oscillation26), we will propose the following 

inference. When a metal is distorted, the atomic bond length and the bond angle within the 

metallic bond are changed as a function of time in the metal distortion strength. The 

repeating distortions stock and release their distortion energies repeatedly as a function of 

the bond factors and time. The bond distortions also bring some corresponded restorative 

forces. The swings of energies and the swings of forces are producing, and the vibration is 

accompanying energy dissipations continually. The swings and the dissipations contribute 

largely to the transient behavior of the damping factor and the frequency. In other words, 

they will depend on the dynamic characteristics of the metallic-bond induced by a 

distortion. The distortion is in proportion to the vibration amplitude. Therefore, both the 

damping factor and the frequency will be affected by the vibration amplitude and they will 

shift timely because the amplitude decreases timely. This is our inference. To check the 

validity of the inference will be also our purpose throughout a study in near future. 

 

2. Experiment  
To analyze a transient phenomenon, we developed a displacement meter based on the 

optical heterodyne method. The meter is constituted with a probe and a console as shown 

in Fig. 1 and its main specifications are listed in Table 1. The stabilized frequency HeNe 

laser light is divided into two lights (signal and reference lights) and they are shifts their 

frequency with acousto-optic modulators (AOMs). Both lights are transferred to the probe 

through polarization maintaining fibers covered with a flexible metal jacket. The signal 

light is outputted for the sample. The outputted light has characteristics of TEM00, linear 

polarization, about 150 W, about 1.1 mrad beam divergence, and about 0.6 mm diameter 

as a collimated light. The outputted light reflects at the sample and the reflection light is 

caught by the probe again. The caught light is interfered with the reference light in the 
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probe. The interference produces an optical beat signal. The probe has two sets of 

interferometers. The other interferometer produces a reference beat signal with the 

reference light and the signal light which does not output externally. Both optical beat 

signals are detected with the respective avalanche photo diodes (APDs) through 

multi-mode fibers covered with the flexible metal jacket, and are changed to the respective 

electric signals. The electric signals’ frequencies are set to about 2.5 MHz.  

By detecting a phase difference between these electric signals and by processing the 

difference, we obtained a displacement of the sample by the heterodyne method rule in a 

processing circuit. In the calculation, the resolution is determined mainly by S/N ratios of 

the beat signals, a stability of laser frequency, and a stability of beat frequency.  

To get high resolution, we introduced, APDs, a stabilized frequency HeNe laser having 

the frequency stability of 9103 
f

f , and a frequency shifter having the beat 

frequency stability of 6105 
f

f . As a result, the resolution of displacement is 1 nm 

or less. In addition, the calculation is executed at 1  s intervals, therefore, the time 

resolution is 1  s. The displacement data are stored up in memories (maximum data 

points = 610 ) continuously at intervals of a sampling time which can be selected with an 

integer multiple of 1  s. These calculated data are transferred to a personal computer (PC) 

and analyzed with our original programs based on the heterodyne theory and the least 

square method. All data are recorded transiently with a format of digital data on the PC 

expressed with 32 bit.  
 

<<Insert TableⅠ in this point>> 

<<Insert Fig.1 in this point>> 
 

The cantilever’s surface was polished flatly and smoothly. Therefore, the reflected 

lights were kept their beam characteristics and scattered hardly. In addition, as the 

cantilever’s size was much larger than the vibration amplitude, all of yawing and rolling 

were ignored. In the optical circuit, S/N ratios of the beat signals were affected mainly by 

the reflection light noises, the fluctuations of the optical lengths, the rotations of the light 
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polarization angle, and the vibrations of the fibers. To suppress these influences, we fixed 

tightly the fibers and the probe, and controlled the flow of air and the temperature 

fluctuation, and checked all of noise sources including used instruments.  

The experimental setup is shown in Fig. 2. The signal light was outputted for the side 

of the cantilever. The distance between the probe and the cantilever was about 1 cm. The 

light reflection point (measurement position) was set at the center position of the width 

with a distance of 8 mm from the tip of the sample regardless of the sample length. The 

probe and the cantilever’s holder were fastened with stages, holders, and metallic frames to 

suppress influences of external vibrations and sound noises. All of stages and frames were 

set on a strongly made table in a tent which is formed with sheets of a polyvinyl film to get 

suppression of temperature fluctuations within the measurement time. In addition, the tent, 

all measuring devices, and all instruments excluding PC were set up within a simple shelter 

built with boards and insulators which were not represented in Fig. 2..  
 
<<Insert Fig.2 in this point>> 
 

The environmental condition parameters of temperature, atmospheric pressure, and 

humidity, were not controlled because they would not fluctuate within the measurement 

time (several ten seconds at most) by the effects of the shielding and the covering. They 

varied within the ranges from 13 to 22 ℃, from 997 to 1009 hPa, and from 35 to 59 %. 

Even if the temperature changed by 10 ℃, the measuring error of the cantilever length is 

only 0.02 mm for the length of 100 mm. The error is too small to evaluate the cantilever 

length dependence. Therefore, our controlling plan will have no problem.  

The characteristics of the sample are listed in Table Ⅱ. The vibration was happened by 

being tapped on the cantilever at near the tip end with a rubber stick. After waiting few 

seconds, the measurement was started. The tapping force and the waiting time were 

changed under the various conditions repeatedly. Since the vibration amplitude is about 

400 m at most and the tapping force is much less than the cyclic stress sensitivity limit, 

the sample is not affected by the stress and strain history. In addition, this small 

deformation will point out that the strain is kept under the elastic limit of the sample and 

any plastic deformations never be occurred. So, the measurements always showed very 

high reproducibility. The length of the cantilever (from the tip to the fixed point) was 
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changed by moving the fixed point and was measured with accuracy to ±0.05 mm. 

 

<<Insert Table Ⅱ in this point>> 
 

An output time interval of the data (sampling time) was set to 16 or 32 s  because the 

vibration was too slow to use directly the meter’s time resolution and the analysis would 

need about 1000 output data points for every oscillation period. As the measurement data 

are calculated every 1  s, one output datum was averaged per 16 or 32 measuring points. 

For every measurement, a million output data were memorized automatically and 

continuously, so the measurement time was 16 or 32 seconds. 

The 106 output data were divided to 20 sections and every section was analyzed with 

the method of least squares independently. The following fitting curve is given by, 
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where n , k , and nt  is output data number, section number, and time at the output data 

number, respectively. And, A  (base factor), E  (inclination factor), iB  (vibration 

amplitude ; i=1, 2, 3), i  (damping factor ; i=1, 2, 3), if  (frequency ; i=1, 2, 3), i  

(frequency shift factor ; i=1, 2, 3), and i  (initial phase ; i=1, 2, 3) are fitting parameters. 

And ),( nkdata  is output datum corresponded to parameters k  and n . The optimum 

values of these parameters were gotten by repeating the fitting operation. After repeated 

operation, we made the standard deviations of the differences between the output data and 

the fitting curve decrease to around 10 nm for almost all operations. When the standard 

deviation was over 30 nm, we excluded the fitting data from the analyses because we 

judged that unknown noises or unknown vibrations were too large to get an exact result. 

Even if the vibration amplitude was less than 1  m, the standard deviation was saturated at 

about 4 nm. This saturation limit will be probably happened by the environmental noise 

generated in the laboratory. As a result of the fitting operation, three frequencies were 
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almost the same. Moreover, the contributions of higher harmonic wave (especially third 

and fifth harmonics) were checked by introducing the relations of 12 3 ff   and 13 5 ff  . 

This fitting analyses gave the relations, 12 0001.0 BB   and 13 0001.0 BB   for all data. 

So we concluded that the fundamental wave in the vibration is so strong that all of higher 

harmonic waves are ignored. In the following description, every parameter is represented 

without suffix because only the fundamental mode wave behavior is treated.  

     
3. Experimental result 
 

The displacements at the measuring point were measured and registered at the sampling 

time intervals continuously. As the number of data points is 610 , one measurement 

includes several thousands of vibration waves. The damping oscillation’s characteristics 

were gotten with two operations. (1) The damping factor was recognized by analyzing the 

envelope of data. (2) The frequency was obtained by fitting operation after magnifying a 

portion of data. The displacement in one measurement varied about from 100 nm to 400

m. An example of the measurement data is shown in Figs. 3(a) and 3(b), in which 

transverse and vertical axes are time in seconds and displacement in nm, respectively.  
 
<<Insert Fig. 3(a) in this point>> 
 

In Fig. 3(a), any oscillation cannot be recognized at all. However the envelope of the 

curve is decayed. Therefore, a damping phenomenon was observed clearly. By magnifying 

the transverse axis of Fig. 3(a), an oscillation was recognized and the sine wave was 

confirmed as shown at Fig. 3(b). The graph shows that the frequency is 71.229 Hz and the 

noise is very small (i.e. high S/N ratio). Therefore, we can judge that measuring oscillation 

is a damped sine-wave oscillation. The damping oscillations were observed in all 

experiments. 

 
<<Insert Fig.3(b) in this point>> 
 

One transient recorded data was divided to 20 sections evenly (each section have 50000 

points). We analyzed the vibration characteristics for every section independently. For the 

frequency, the error was within ±0.004 Hz at worst because about 50 waves were included 
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in one section at least and one wave was expressed with about 1000 data points. For the 

damping factor  , the error  satisfied the relation of 02.0/    for all data 

because the decay rate was analyzed with about 50 points or more per section. 

   
3.1  Frequency characteristics 
3.1.1  Transient characteristics 

By doing the fitting operation for all sections independently, we obtained the frequency 

f and the damping factor   for each section. Both of f  and   have 20 data lined up 

at the section interval which is one-twentieth of the sampling time. The series of data show 

a time dependence of them and give their transient characteristic. In other words, the 

transient behavior of f  can be expressed with the variation of the vibration amplitude B  

because it is also a transient characteristic. An example is shown in Fig. 4. In the figure, the 

linear relation of Bmff  0  is satisfied. (A linear equation is shown as a result using 

the least square method. The constant 2R  is Pearson's correlation coefficient given by the 

values, 12 )(1  SSSER , 2)( ii yYSE  , and 122 ))((  NyySS ii , where 

iy , iY , and N are the i-th data value (frequency), the i-th calculated value on the linear 

equation, and the number of data, respectively. (Expressions of the linear equation (or the 

cubic curve) and the 2R  value are used for almost figures in this paper. ) 

Some characteristics are known, (1) the frequency is not constant but increases with 

time, (2) the frequency shift is very small but is larger than our experimental resolution 

(every data have noises of ±0.004 Hz or less), (3) there are a linear relation between the 

vibration amplitude and the frequency. These transient characteristics were observed in all 

measurements. We reflected in advance the shift effect to the fitting operation by 

introducing the factor of   as given in Eq. (1).  
                     
<<Insert Fig.4 in this point>> 
 

For the first and second notice, the measuring error and analyzing error is so small that 

the frequency shifts and their vibration amplitude dependences were confirmed with good 

reproducibility significantly. In other words, a result of “the decrease of the vibration 

amplitude makes the frequency increase” was confirmed for all experiments.  
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For the third notice, the fitting with a linear function of Bmff  0  had always 

high correlation coefficient. But, in sometime cases, the fitting with a cubic function of 
2/1

12
2/3

30 BaBaBaff  was better slightly than one with the linear function. 

However these 2R  values were nearly equal. So we adopted the linear function as the 

fitting curve. The condition of 0m  were always satisfied. In addition, by repeating 

experiments, it was certified that these parameters didn’t depend on the initial vibration 

amplitude and the sampling time. 

The reproducibility of these results was within about an error of ±0.2 % in spite of all 

effects based on the variations of the temperature, the atmospheric pressure, and the 

humidity.  

3.1.2  Dependence of 0f  on the cantilever length 
 

By varying the cantilever length L  from 75 mm to 200 mm, we investigated the 

dependence of 
0

f  (the frequency at zero vibration amplitude) on L  as shown at Fig. 5. 

The value of )log( 0f  depended linearly on )log(L  with very high 2R  of 0.998. As a 

result, we got the relation of 863.1
0

 Lf . While, the BE theory gives the relation of 

2 Lf . Though 
0

f  is not a measurement value, as the relation of Bmf 0  is 

always satisfied, we may represent the relation of 863.1 Lf , with which we obtain that 

the L  dependence of the frequency is different from one of the BE theory explicitly.  
    

<<Insert Fig.5 in this point>> 
 
To study the difference between the experimental results and the BE theory in Section 

4, the relation of 863.1
0

 Lf  was examined analytically with terms up to the higher order 

of L  as follows. The relation form will be developed by the following expressions, (1)

)1( 2 L
d

L
D  , (2) )1( 32 L

d
L

D  , (3) )1( 42 L
d

L
D  , (4)

dL
D
2 , (5)

dLL
D
2 , etc. The case of (1) 

is denied by the BE theory. For the cases (4) and (5), the expansions are corresponded to 

cases (2) and (3) approximately. Therefore, as the experimental expression of 0f , we 
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adopted both cases (2) and (3). By fitting to the data curve, we obtained the values of D  

and d  as shown in the Table Ⅲ. In the fitting process, the correlation coefficient 

between data and the expression always kept over 0.995. It shows that these expressions 

consist of the sum of the BE theory’s term and an additional term. Though the additional 

terms in two cases are difference, in this stage, we could not select with explicit belief. 

Therefore we propose both cases as the experimental expression of 0f  and f . 
 

<<Insert Table Ⅲ in this point>> 
 

3.1.3   Dependence of m  on the cantilever length 
 
The slope m  depend also on the cantilever length. Though the analytical error was not 

small, the relation of 5.3 Lm was obtained as shown in Fig 6 (the longitudinal axis is 

)log( m  because 0m ). Though the linear relation was appropriate for the most results, 

the cubic function was sometimes reasonable expression for small L . This slight 

difference in the expression may make the data distribute as shown in Fig. 6.  

 
<<Insert Fig.6 in this point>> 
 

The L  dependence of m  is different obviously from one of the frequency. The 

difference may suggest that the generation mechanism of m  is different from one of the 

frequency. However, the frequency shift Bm  is so small that both f  and 0f  will be 

generated by the same mechanism. Therefore, the term of Bm  will have the same L  

dependence as the frequency because it is an additional frequency shift 00 fff  . By 

treating the experimental expressions of the frequency described in Sec. 3.1.2, we can 

estimate that either state of 3 LBm  or 4 LBm  will be satisfied. The estimation 

is matched to the experimental expression of 5.3 Lm if the vibration state is formed in a 

mixture of two states which correspond to two cases in table Ⅲ.  

This mixture may be understood with the following approach. The vibration is 

originated in a repeated energy-exchange operation between distortion energy and kinetic 

energy accompanying dissipations of heat energy. The states will be able to be described 

with behaviors (include their time dependences) of these energies induced by each 
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mechanism. So, if two states correspond to the relations of 3 LBm and 4 LBm , 

two states have different energy behaviors and mechanisms. However, when total energy is 

nearly the same between two states, the two states can generate competitively. The 

competitive generation process will change the L  dependence to a characteristics of a 

middle state described as a mixed state of two states. Therefore, we can understand the 

experimental results of L  dependence by introducing the mixture of two states.  

3.2  Damping factor characteristics 

3.2.1  Transient characteristics 

  The damping factor   was also investigated individually for all sections and its 

transient variation was represented as a function of the vibration amplitude. An example is 

shown in Fig. 7, which is plotted at the section intervals for the transverse axis. In this 

graph, the error of   was less than 0.003. Explicitly, the damping factor was not constant 

but depended on the vibration amplitude within the measurement time of several tens 

seconds. The dependence was complex and   had a minimum value described with the 

relation of N
mm BB )(   , where m , mB , and   are the minimum damping 

factor, the vibration amplitude at the minimum, and a coefficient, respectively, the value of 

N  was gotten by the fitting. For all data, we obtained N=2 or N=3. The relation 0  

was always kept. All of values of m , mB , and   depended on the cantilever length L . 

However, they didn’t depend on the initial vibration amplitude and the sampling time. 

Certainly large initial vibration amplitude was produced large damping factor. However, 

the minimum value was always observed at nearly the same mB value. The reproducibility 

was an error of ±2.6 % including all effects based on the variations of the temperature, the 

atmospheric pressure, and the humidity. 

   
<<Insert Fig.7 in this point>> 
 

   The generation of the minimum will be understood as follows. Two kinds of energy, the 

distortion energy and the kinetic energy, produce the vibration and the decay. When B  is 

large, the distortion is so large that its energy release makes the damping factor enlarge. 

Larger distortion (i.e. amplitude) brings about large damping. While, when B  is small, 
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the distortion is to be weak and the kinetic energy is dominant for moving cantilever. The 

air resistance will contribute to the damping mainly. The kinetic energy and the resistance 

is proportional to 2B  and B , respectively. So, smaller B  brings about large damping. 

Therefore, this counteraction based on two kinds of energy will generate the minimum. 

3.2.2  Dependence of m  on the cantilever length 

The minimum value of the damping factor m  depended also on the cantilever length 

L as shown in Fig. 8. The graph shows that (1) m  is not constant, (2) it depends on L , 

and (3) short L  produces large m . The characteristics of (1) and (2) were expected by 

their transient variations and the previous analyses about the frequency. For the third 

characteristics, we will be able to understand as follows. Shorter cantilever generates larger 

distortion under the condition that the vibration amplitude is the same. Larger distortion 

generates larger restoring force. Larger force generates larger speed of the cantilever and 

stronger damping. Therefore, shorter cantilever will produce larger damping factor. 

 
<<Insert Fig.8 in this point>> 

 

As the analytical data points were 20 mostly and the error in the curve fitting operation 

was not small, the value of m  distributed widely. Especially, for small L  value, the 

wide fluctuations were brought a indeterminancy for the selection of N . Though these 

some ambiguities were appeared in the fitting operation, the values of m  were expressed 

with the relation of 1.05.2  Lm  definitely. So we can propose several expressions for 

m , (1) )1( 32 L
g

L
G  , (2) )1( 42 L

g
L

G  , (3)
gL

G
2 ,(4)

LgL
G
2 , etc., where G  and g  are 

unsettled fitting parameters. Cases (3) and (4) are approximately equal to cases (1) and (2). 

So, the cases (1) and (2) were used in the following analyses. However, in this stage, we 

could not judge which cases it was a good expression to understand. Therefore, we treated 

both cases as the experimental expression and calculated their values as listed in Table Ⅳ. 

 
<<Insert Table Ⅳ in this point>> 
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3.2.3    and mB characteristics 

 The values of mB  and   depended also on the cantilever length as shown in Figs. 9 

and 10, respectively. The error for the damping factor in the neighborhood of the minimum 

was nearly equal to 0.005. The minimum point as shown in Fig. 7 was detected in almost 

all cases even if the error was over 0.01. As the calculated points are 20 at most in the 

fitting curve, the values of mB  and   distribute widely. For both graphs, though the 

dispersions were not so small, both parameters could be represented with expressions of 
5.09.1  LBm and 2.09.4  L . In spite of the wide distributions, the signs of the slopes 

were different obviously between these two fitting lines.  

 
<<Insert Fig.9 in this point>> 

<<Insert Fig.10 in this point>> 

 

The difference of the slope sign will be understood as follows. Two kinds of energy 

will control the damping as described in Sec. 3.1.2. When L  is large, the distortion 

energy is weak because the bending curvature is to be small and, therefore, the damping is 

small. So, large vibration amplitude needs to get the condition that the distortion energy 

works dominantly. The variation of the kinetic energy loss is not so large. Therefore, large 

L  makes mB  increase so that the slope sign in the expression of mB is positive. And, the 

decrease of the distortion energy under large L  requires a large vibration amplitude to get 

a balance between the distortion energy and the kinetic energy. In other words, the 

damping decreases with increasing the cavity length. Therefore, the slope sign in the 

expression of   is negative. But, we cannot discuss them quantitatively in this paper.   

 
4. Theory 

We investigated several equations proposed in many published papers which refer to 

the damping oscillation. So that, we knew that the following modified Bernoulli-Euler 

equation is the best to understand our experimental results.  
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where, y, x, t, E, I,  , and A are displacement, vibration position, time, Young modulus, 

second moment of area, density, and cross section, respectively. The factors   and   

are coefficients of resistances based on the shearing force and the vibration velocity, 

respectively. The damping phenomenon requires both conditions of 0  and 0 . 

To resolve Eq. (2) and to understand the match between this equation and our 

experimental results, we introduced three assumptions.  

<First assumption> 

The first assumption is to express the displacement with a separation of variables as 

follows, 

)sin()exp()(),( ttxZtxy  ,                                    (3)                                                    

where  ,  , and )(xZ  are damping factor, angular frequency, and vibration amplitude 

at position x , respectively. On substituting Eq. (3) in Eq. (2), it follows that, 
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If )(4 tP is not time function and if it is constant, the equation is consistent with the BE 

theory which gives a condition 875.1PL  for the lowest mode vibration. (The relation 
1875.1)(  LtP  will be able to treat as an approximation.)  

<Second assumption > 

The second assumption is to replace )(4 tP with its time-averaged value 4Q  which is 

defined as follows, 

  




TT

EIk
k

tEIk
tkdt

T
tdtP

T
Q

0 12
1

2

11

22
0

44 )cos(
)sin(

)sin(1)(1 

 .          (5)                                            

For the lowest mode, as Q  can treat as a constant, the relation of 1875.1  LQ will be 

satisfied as the first approximation. By using this approximation and new variables defined 
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with
 

4
0

4
4 LL

EIc

A
EIQ

A   , 4
4 L

EIcEIQ
  , and 4)875.1(c , we get the 

following smart form, 

      
)()1(

)1(212






 .                                       (6)                                                            

<Third assumption > 

The third assumption is to introduce the L dependence for two parameters   and   

as follows, 

NL
1

0   ( NN LL
EIc

L
EIc

  4
0

404  )   and   ML0  . 

Both 0  and 0  are constants and both N  and M  are undetermined values.  

With using these assumptions and substituting the experimental expressions of 

)1(2 20 mL
d

L
D    and )1( 2 nL

g
L

G   (both indexes m  and n  are 3 or 4) and their 

values given in Tables Ⅲ and Ⅳ to Eq. (6), we can rewrite under an approximation of 

0  . From the consistent judge for order of L  term under the condition of 1g , we 

could accept conditions, 2N , 2M , and nm  . By treating these conditions, the 

following expressions are satisfied regardless of the value of )( nm  . Higher order terms 

were ignored because they were neglected in the expressions of   and  , 

RGGGD )21(4 00
2

00
22            (For 4L term), and 

RGGgdD )22(8 0000
22             (For mL 2 term), 

where )()1( 00000
1   GR . These equations are changed to,  

  
000

000

)1)(1(
)1(22



GGG

GGG
g
d




     

)()1(
)1)(1(4

00000
2

000
2

22




GGGGG
GGG

G
D





 ,                            

(7)
                         

Equations (7) give the values of 0G  and 0G  (and the other values) uniquely as shown 

in Table Ⅴ under the conditions of 00 G  and 00 G . 
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<< Insert Table Ⅴ in this point>> 

 
These values show that the approximations of 1 and    are adequate. The 

BE theory’s frequency for the lowest mode vibration has been expressed with 


 1)875.1()( 4

4
2 

A
EI

L
Lth . Therefore, Eq. (6) is rewritten with changing expression from 

2  to 2
cal  by           

22

2

1
1

thth

cal











 .                                                (8)                                                                

To confirm this relation, experimental frequencies were compared with this theoretical 

calculation frequency cal  as shown in Fig. 11. In the expression of cal , both of   and 

L  are used with the experimental data and the parameters in Table Ⅱ and Ⅴ.  

 

<< Insert Fig. 11 in this point>> 

 

This graph shows clearly that the experimental frequency is nearly equal to the 

theoretical calculation frequency in the wide range of frequency, where the cantilever 

length is varied from 75 to 200mm. In other words, the cantilever vibration having above 

length could be expressed with Eq. (8) and the parameters shown in Table Ⅴ.  

This equality and Eq. (8) suggest that the proportional relation of  )(2
exp L  is 

realized, where exp is the experimental frequency and the coefficient )(L  is a function 

of L . So the relation has to be confirmed individually under every L . They were checked 

on for all cantilever length. An example is shown in Fig. 12 in the case of L =140.95 

[mm]. Though the data distribution is broad, a linear relation is recognized with a negative 

slope dependence sufficiently. The characteristics were satisfied for all L  and the relation 

of 22

2 1
1

)(
L

constL
th

th 




  could be expressed with 15110const  for all L  

by using parameters given in Table Ⅱ and Ⅴ 
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<<Insert Fig.12 in this point>> 

 
Therefore, we can understand the experimental results by introducing Eq. (2) including 

two resistance parameters and by setting three assumptions. In short, our proposed 

modified EB equation can be described the damping oscillation of the cantilever.   

 

5. Discussion 
(1) The coefficients   and   are always appeared in all equations (Eqs. (2)-(8)). It 

shows that both coefficients are essential factors having correlative effects in the analyses 

of the damping oscillation. If either of the factors is zero, experimental results cannot 

understand without the consistency. They don’t contribute to the motion independently 

because they appear as a pair in the functions of the frequency and the damping factor. 

 (2) The second assumption will be reasonable by the following reason. The time 

variation of   and   is small as shown in Figs. 4 and 7. The coefficients 0  and 0  

are nearly constant as shown in Table Ⅴ. Therefore, parameters in Eq. (4) are estimated to 

be 11 k , 2k , 1cos 1  , 0sin 1  , 0cos 2  , 1sin 2  , 01  , and 

2
3

2
  . Though the function )(4 tP  has singular points at  nt 2 ( n ;integer), the 

contribution to the displacement at the points in the period motion will be small because 

the cantilever vibration will pass through these points momentary in its continuous 

movement by its inertial force. Therefore, the second assumption will have acceptability 

without defect.   

(3) The third assumption will be reasonable by the following reason. The expression of 
2  includes terms of 4L , 5L , and 6L as shown in Table Ⅲ. And   is expressed 

with term of 4L . So, the numerator (mainly  ) in Eq. (6) must include 1L , 2L , and 
3L  terms. While, the expression of   include 2L  and 3L  (or 4L ) as shown in Table 

Ⅳ. Therefore, the term   ( 4L ) must be expressed with the term of 2L . The term 

)(    of the denominator of Eq. (6) is required to express with the term of 4L . 

Therefore, relations of 2L  and 
2 L  ( 2L ) can be assumed consistently.  

(4) For values of m  and n  in the expressions of   (Table Ⅲ) and m  (Table 
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Ⅳ), we could not specified except the condition of nm  . For both 3m  and 4m  

cases, our experimental results could be understood them without contradiction and 

defectiveness. Reversely, we infer that a damping oscillation may be a behavior fluctuating 

between two states corresponded to two cases, whose idea is also touched in Sec. 3.1.3.  

(5) The ratio of two resistance terms in Eq. (2) on the lowest mode is written by, 

     74

0

044

0

0
4

5

108.7)875.1( 















 EILQEI

t
y

tx
yEI

. 

The ratio is extremely small. So, the resistance based on the shearing stress may be ignored 

in Eq. (2). Certainly, the condition of 0  do not happen any problem in Eqs. (3)-(8). 

So, we have a question “Is the introduction of two terms needful and essential in the 

discussion of the damping oscillation? “. In the cantilever, the kinetic energy dissipation 

will be much larger than the shearing stress energy dissipation, and, therefore, the damping 

oscillation will be controlled strongly by kinetic energy dissipation. The ratio shows as if 

this view is more suitable. However, Eq. (8) is satisfied as demonstrated in Figs. 11 and 12, 

and the condition of 0  cannot explain all of experimental results. Therefore, even if 

the term is small, the two coefficients are needful and indispensable to understand the 

damping oscillation. 

(6) For the experimental results “the frequency and the damping factor depend on the 

vibration amplitude”, we don’t have sufficient explanation capability quantitatively. At the 

present stage, our inference will be investigating to clear only qualitatively the cantilever 

motion mechanism.  

６．Conclusion 
The damping oscillations of the cantilever were measured with the optical heterodyne 

meter which was developed with high performances of a time resolution of 1  s, a 

displacement resolution of 1 nm, and continuous measured points of 610 . The measured 

data errors were less than about 10 nm at worst. By fitting data to the form written by Eq. 

(1) with the least square method, we investigated the damping oscillations of the cantilever. 

We obtained that both the vibration frequency f  and the damping factor   depend on 
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the vibration amplitude B  transiently in the expressions of Bmff  0  and 

N
mm BB )(   , respectively. In addition, by analyzing many data, we obtained 

that all these values of 0f , m , m ,  , and mB depend on the cantilever length L . 

Especially, the relations 863.1
0

 Lf  and 1.05.2  Lm  were obtained. 

To understand our results, we investigated the modified BE equation. By analyzing the 

equation under three assumptions, we could explain the experimental results through 

emphasizing parameters of   and   clearly. We calculated both values with the 

experimental expressions and the analyzed values. And we conclude that both parameters 

are necessary and indispensable factors for the description of the damping oscillations. 
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Figure Captions 

Fig. 1 Construction of the optical heterodyne meter. Two interferometers in the probe 

make two optical beat-signals. The phases of the signals are calculated in the processing 

circuit and are changed to the displacement data.  

Fig. 2 Experimental setup. Sample cantilever and the probe were fixed with holders, stages, 

and frames. The displacement was measured optically with resolution of 1nm.  

Fig. 3(a) An example of oscillation on the condition 150.0 mm cantilever length 

(measurement time=16 s). Thought none of oscillation wave form can be confirmed in this 

graph, the envelope curve is unquestionably decayed. 

Fig. 3(b) The magnification of Fig. 3(a) (range from 15.92 s to 16 s). The oscillation is a 

sine wave and its frequency is 71.229 ±0.001 Hz. As the noise is less than 10 nm. The 

damping can hardly be recognized in this graph. 

Fig. 4 An example of transient variation of the frequency. The cantilever length is 85.0 

mm. 

Fig. 5 The cantilever length dependence of 0f . The data were plotted on the relation of 

863.1
0

 Lf  with high correlation coefficient of 0.998. 

Fig. 6 The cantilever length dependence of the slope m  of the relation Bmff  0

(longitudinal axis is )log( m  because of 0m ). The relation 5.3 Lm  was obtained. 

Fig. 7 An example of the transient variation of the damping factor  . The cantilever 

length was 102.5 mm. It was expressed with the relation of 3)( mm BB    with 

high correlation coefficient. 

Fig. 8 The cantilever length dependence of m . The relation of 1.05.2  Lm  was 

obtained. 

Fig. 9 The cantilever length dependence of mB . The relation of 5.09.1  LBm was obtained 

Fig. 10 The cantilever length dependence of  . The relation of 2.09.4  L was obtained.  

Fig. 11 Conformity between the theoretical frequency and the experimental frequency data. 

In the wide range, the validity of our induced parameters in Table Ⅴ is also confirmed.  

Fig. 12 An example of the relation between   and 2  in the L=140.95 mm case. A 
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linear relation  )(2 L  was nearly satisfied. This negative slope was realized for all 

cases. 
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Table Ⅰ   Characteristics of the optical heterodyne displacement meter. 
Method Optical heterodyne measurement method 
Displacement 
resolution 

1 nm 

Time resolution 1 μs 
Laser Frequency stabilized HeNe laser 

Frequency stabilization; 9103/  ff  
Beat-frequency 
controller 

Frequency shifter 
Beat frequency stabilization; 6105/  ff  

Measurement point 610  points 
Sampling time Selection among 1μs, 2μs,4μs, 8μs, 16μs… 

N2 μs…2048μs.        N is 0 to 11. 
Interferometer Both an outputted signal light and a reference light are 

interfered in the probe, two optical beat-signals are produced. 
Optical Probe size Cylindrical form. 35 mm diameter, 80 mm length 
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Table Ⅱ  Characteristics of the cantilever sample 
Material SUS304 
Size Cross section  mmmm 210   

Length        300 mm (max.) 
Density 7.93×103 [kg/m3] 
Young modulus 193     [GPa] 
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expression D d 

)1( 320 L
d

L
Df   1.702±0.05 (1.48±0.05)×10-2 

 

)1( 420 L
d

L
Df   1.604±0.05 (9.02±0.28)×10-4 

 

Table Ⅲ  The experimental result 863.1
0

 Lf  could be expressed with terms up to the 

higher order of L , two cases were proposed. For both cases, the coefficients 

D  and d  were calculated analytically by fitting operations.  

 

  



   

27 

 
 

 

 

 

Table Ⅳ The experimental result 1.05.2  Lm  was able to describe with two 

experimental expressions in which the coefficients G  and g  were 

calculated analytically.  

  

expression G  g  
)//1( 32 LgLGm   0.00345 00014.0  0.107 0125.0  

)//1( 42 LgLGm   0.00482 00027.0  0.00445 00045.0  
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m (=n) 
0G  0G  0   0  0  

3 (1.7±0.10)×10-7 0.22±0.015 (4.9±0.3)×10-5 64±4 1020±70 

4 (2.3±0.15)×10-7 0.28±0.02 (4.9±0.3)×10-5 60±4 950±60 

Table Ⅴ The values 0 [Kgm/s], 0 [s/m2], 0 [s/m2], and the other factors were 

calculated with the experimental expressions. The coefficients are nearly 

constant in spite of different expression.  
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Fig. 3(a) 
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Fig. 3(b) 
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Fig. 4 
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Fig. 5 
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Fig.6 
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Fig.7 
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Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig 11 
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Fig. 12 
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