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Abstract. In this article, we construct an Euler system using CM cycles on Kuga-Sato varieties over Shimura
curves and show a relation with the central values of Rankin-Selberg L-functions for elliptic modular forms
and ring class characters of an imaginary quadratic field. As an application, we prove that the non-vanishing
of the central values of Rankin-Selberg L-functions implies the finiteness of Selmer groups associated to the
corresponding Galois representation of modular forms under some assumptions.

Introduction

Let ℓ be a prime and fix an embedding ιℓ : Q→ Cℓ, where Cℓ = Q̂ℓ. Let N be a positive integer and k an
even positive integer. Let

f =

∞∑
n=1

an(f)e2πinz ∈ Sk(Γ0(N))new

be a normalized cuspidal eigenform. Denote E = Qℓ({an(f)}n) for the Hecke field of f over Qℓ and fix a
uniformizer λ of the ring of integers O of E. Denote the residue field of E by F. Let

ρf : Gal(Q/Q)→ GL2(E)

be the Galois representation associated to f . We put ρ∗f = ρf ⊗E(2−k2 ) and denote Vf for the representation

space of ρ∗f . Fix a Gal(Q/Q)-stable O-lattice Tf and set Af = Vf/Tf . Let L be an abelian extension of Q
and χ a character of the Galois group Gal(L/Q). By the Bloch-Kato conjecture [5], it is expected that the
central value of the L-function of f twisted by the character χ is related to the order of the χ-part of the
Selmer group Sel(L,Af ). Kato [21] proved that the non-vanishing of the central value L(f, χ, k/2) implies
the finiteness of the χ-part of the Selmer group Sel(L,Af ). Moreover, Kato showed a result on the upper
bound of the size of Selmer group in terms of the special values of L-functions using the Euler system of
Beilinson-Kato elements in K2 of modular curves. For an elliptic curve E over Q and an imaginary quadratic
filed K, similar results in the anticyclotomic setting are considered by Bertolini-Darmon [3] and Longo-Vigni
[23] using the Euler system constructed from CM points on Shimura curves. These results were generalized
to modular abelian varieties over totally real fields by Longo [22] and Nekovář [27]. In this paper, we will
consider the generalization of these results for the central values of L-function associated to higher weight
modular forms twisted by ring class characters over an imaginary quadratic field K,

We fix an imaginary quadratic field K of discriminant DK < 0 satisfying (N,DK) = 1 and denote the
integer ring of K by OK . Then K determines a factorization N = N+N−, where N+ is divisible only by
primes which splits in K and N− is divisible only by primes which are inert in K. Assume that

(ST) N− is a square-free product of an odd number of inert primes.

Fix an integer m such that (NDK ,m) = 1 and let Km be the ring class field of conductor m. Let χ be
a character of the Galois group Gm = Gal(Km/K). Then we can define the Rankin-Selberg L-function
L(f/K, χ, s) associated to f and χ. We define a complex number Ωf,N− by

Ωf,N− =
4k−1πk||f ||Γ0(N)

ξf (N+, N−)
,
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where ||f ||Γ0(N) is the Petersson norm of f and ηf (N) is the congruence number of f among cusp forms in

Sk(Γ0(N))N
−−new(see §1 for details). Then Bloch-Kato conjecture predicts a relation between the values

L(f/K,χ,k/2)
Ωf,N−

and the size of the χ-part of Selmer group Sel(Km, Af ),

We consider the following condition.

Hypothesis (CR+) . (1) ℓ > k + 1 and #(F×
ℓ )k−1 > 5,

(2) The restriction of the residual Galois representation ρ̄f of ρf to the absolute Galois group of

Q(

√
(−1)

ℓ−1
2 ℓ) is absolutely irreducible,

(3) ρ̄f is ramified at q if either (i) q | N− and q2 ≡ 1 (mod ℓ) or (ii) q||N+ and q ≡ 1 (mod ℓ),
(4) ρ̄f restricted to the inertia group of Qq is irreducible if q2 | N and q ≡ −1 (mod ℓ).

Our main result is the following theorem.

Theorem 0.1. Let χ be a ring class character of conductor m. Suppose that f is a cuspidal Hecke eigen
newform. Assume the following conditions:

(1) ℓ does not divide NDK [Km : K].
(2) the residual Galois representation ρf satisfies the condition (CR+).

If c = ordλ(L(f/K,χ,k/2)Ωf,N−
) is finite, then we have λ

c
2 · Sel(Km, Af )χ = 0. In particular, if L(f/K, χ, k/2) is

not zero, then for all but finitely many primes λ the χ-part of the Selmer group Sel(Km, Af ) is trivial.

Remark 0.2. (1) The assumption (ST) implies that f is not a CM form. Hence the residual Galois
representation ρf = ρf,λ satisfies the condition (CR+) for all but finitely many λ.

(2) Let Ωcan
f be Hida’s canonical period defined by

Ωcan
f =

4k−1πk||f ||Γ0(N)

ηf (N)
,

where ηf (N) is the congruence number of f among cusp forms in Sk(Γ0(N)). Under the hypothesis
(CR+), one can show that

Ωf,N− = u · Ωcan
f for some u ∈ O,

if we further assume that ρf is ramified at all primes dividing N−.

A similar result is given as a corollary of anticyclotomic Iwasawa main conjecture concerned in [9] under
the ordinary condition. In this paper, we remove the ordinary condition.

To prove our main theorem, we develop the method of Bertolini-Darmon [3] on the Euler system obtained
from CM points on Shimura curves. In [9], we used an Euler system obtained from CM points on Shimura
curves and congruences between modular forms of higher weight and modular forms of weight two in the
ordinary case. However, in the non-ordinary case it seems difficult to use such congruences. Therefore
we choose to use CM cycles on Kuga-Sato varieties over Shimura curves instead of CM points. For the
construction of Euler system, we also use a level raising result (Theorem 5.3) for higher weight modular
forms and the assumption (CR+) is necessary to show the level raising result. More precisely, under the
assumption (CR+) we have a freeness result (Proposition 5.1) of the space of definite quaternionic modular
forms as Hecke modules and it is used in an important step in the proof of the level raising result. The
freeness result is a generalization of [8, Proposition 6.8] to the “low weight crystalline case” which is closely
related to “R = T” theorems and our case was considered by Taylor [33]. Then one can construct an Euler
system using CM cycles and a level raising argument.

Moreover we show a relation between the Euler system and central values of Rankin-Selberg L-functions
(Theorem 7.4), so-called the first explicit reciprocity law by Bertolini-Darmon. In the case of weight 2, the
explicit reciprocity law is proved by Kummer theory and the theory of ℓ-adic uniformization of Shimura
curves. To show the explicit reciprocity law in higher weight case, it is necessary to compute the image of
CM cycles under the ℓ-adic Abel-Jacobi map which is defined by Hochschild-Serre spectral sequence. Since
it is difficult to compute the image of CM cycles directly, we give a different description of the image of CM
cycles using the theory of vanishing cycles and the theory of ℓ-adic uniformization of Shimura curves. This
is a main ingredient of our proof.
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This article is organized as follows. First, we review the theory of modular forms on quaternion algebras
and special value formula of Waldspurger in §1. Moreover, we recall basic facts on Galois cohomology and
Selmer groups in §2. In §3, we review the theory of vanishing cycles which is used in §4 and §5. In §4, we
prepare some fundamental results on the cohomology of Shimura curves. In §5, we show a level raising result
for higher weight modular forms and prove a key result to compute the image of CM cycles under the ℓ-adic
Abel-Jacobi map. In §6 and §7, we construct a special cohomology classes using CM cycles on Kuga-Sato
varieties and give a proof of the main theorem.
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1. Theta elements and the special value formula

In this section, we recall the construction of the theta element and the relation with central values of
anticyclotomic L-functions for modular forms following [8, §2, 3 and 4].

Fix an embedding ι∞ : Q ↪→ C and an isomorphism ι : C ∼→ Cp for each rational prime p, where Cp is

the p-adic completion of an algebraic closure of Qp. Let Ẑ := lim←−Z/mZ be the finite completion of Z. For

Z-algebra A, we denote A⊗Z Ẑ by Â.
Let K be an imaginary quadratic field with the discriminant −DK < 0 and let δ =

√
−DK . Denote z 7→ z̄

for the complex conjugate on K. Define θ by

θ =
D′ + δ

2
, D′ =

{
DK if 2 ∤ DK ,

DK/2 if 2 | DK .

Fix positive integers N+ that are only divisible by prime split in K and N− that are only divisible by primes
inert in K. We assume that N− is the square-free product of an odd number of primes. Let B be the definite
quaternion over Q which is ramified at the prime factors of N− and the archimedean place. We can regard
K as a subalgebra of B. Write T and N for the reduced trace and norm of B respectively. Let G = B× be
the algebraic group over Q and let Z = Q× be the center of G. Let ℓ ∤ N− be a rational prime. Let m be a
positive integer such that (m,N+N−ℓ) = 1. We choose a basis of B = K ⊕K · J over K such that

• J2 = β ∈ Q× with β < 0 and Jt = tJ for all t ∈ K.
• β ∈ (Z×

q )2 for all q | N+ and β ∈ Z×
q for q|DK .

Fix a square root
√
β ∈ Q of β. We fix an isomorphism i(N

−) =
∏
q∤N− iq : B̂(N−) ∼= M2(A

(N−)
f ) as follows.

For each finite place q|mℓN+, the isomorphism iq : Bq ∼= M2(Qq) is defined by

iq(θ) =

(
T(θ) −N(θ)

1 0

)
, iq(J) =

√
β ·
(
−1 T(θ)
0 1

)
(
√
β ∈ Z×

q ).

For each finite place q ∤ N+N−ℓm, choose the isomorphism iq : Bq := B ⊗Q Qq
∼= M2(Qq) such that

iq(OK ⊗ Zq) ⊂M2(Zq).

From now on, we shall identify Bq and G(Qq) with M2(Qq) and GL2(Qq) via iq for finite q ∤ N−. Finally,
we define

iK : B ↪→M2(K), a+ bJ 7→ iK(a+ bJ) :=

(
a bβ

b a

)
(a, b ∈ K)

and let iC : B →M2(C) be the composition iC = ι∞ ◦ iK .
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Fix a decomposition N+OK = N+N+ once and for all. For each finite place q, we define ςq ∈ G(Qq) as
follows:

ςq =



1 if q ∤ N+m,

δ−1

(
θ θ

1 1

)
if q = qq̄ is split with q|N+,(

qn 0

0 1

)
if q|m and q is inert in K (n = ordq(m)),(

1 q−n

0 1

)
if q|m and q splits in K (n = ordq(m)).

Define x : A×
K → G(A) by

xm(a) := a · ς (ς :=
∏
q

ςq).

This collection {xm(a)}a∈A×
K

of points is called Gross points of conductor m associated to K.

Let OK,m = Z + mOK be the order of K of conductor m. For each positive integer M prime to N−,
we denote by RM the Eichler order of level M with respect to the isomorphisms {iq : Bq ≃ M2(Qq)}q∤N− .
Then one can see that the inclusion map K ↪→ B is an optimal embedding of Om into the Eichler order

B ∩ ςR̂M (ς)−1 (i.e. (B ∩ ςR̂M (ς)−1) ∩K = OK,m) if ordq(M) ≤ ordq(m) for all primes q|m.

Let k ≥ 2 be an even integer. For a ring A, we denote by Lk(A) = Symk−2(A2) the set of homogeneous
polynomials in two variables of degree k − 2 with coefficients in A. We write

Lk(A) =
⊕

− k
2
<r< k

2

A · vr (vr := X
k−2
2

−rY
k−2
2

+r).

Also we let ρk : GL2(A)→ AutALk(A) be the unitary representation defined by

ρk(g)P (X,Y ) = det(g)−
k−2
2 · P ((X,Y )g) (P (X,Y ) ∈ Lk(A)).

If A is a Z(ℓ)-algebra with ℓ > k − 2, we define a perfect pairing ⟨ , ⟩k : Lk(A)× Lk(A)→ A by

⟨
∑
i

aivi,
∑
j

bjvj⟩k =
∑

−k/2<r<k/2

arbk−2−r · (−1)
k−2
2

+rΓ(k/2 + r)Γ(k/2− r)
Γ(k − 1)

.

For P, P ′ ∈ Lk(A), this pairing satisfies

⟨ρk(g)P , ρk(g)P ′⟩k = ⟨P, P ′⟩k.
Via the embedding iC, we obtain a representation

ρk,∞ : G(R) = (B ⊗Q R)×
iC−→ GL2(C)→ AutCLk(C).

Then C · vr is the eigenspace on which ρk,∞(t) acts by (t/t)r for t ∈ (K ⊗Q C)×. If A is a K-algebra and

U ⊂ G(Af ) is an open compact subgroup, we denote by SBk (U,A) be the space of modular forms of weight
k defined over A, consisting of functions f : G(Af )→ Lk(A) such that

f(αgu) = ρk,∞(α)f(g) for all α ∈ G(Q) and u ∈ U.

Denote SBk (A) := lim−→U
SBk (U,A). Let A(G) be the space of automorphic forms on G(A). For v ∈ Lk(C)

and f ∈ SBk (C), we define a function Ψ(v ⊗ f) : G(Q)\G(A)→ C by

Ψ(v ⊗ f)(g) := ⟨ρk,∞(g∞)v, f(gf )⟩.

Then the map v⊗f 7→ Ψ(v⊗f) gives rise to G(A)-equivariant morphism Lk(C)⊗SBk (C)→ A(G). Let ω be a

unitary Hecke character of Q. We write SBk (U, ω,C) = {f ∈ SBk (U,C) | f(zg) = ω(z)f(g) for all z ∈ Z(A)}.
Let ABk (U, ω,C) be the space of automorphic forms on G(A) of weight k and central character ω, consisting

of functions Ψ(f ⊗ v) : G(A)→ C for f ∈ SBk (U, ω,C) and v ∈ Lk(C). For each positive integer M , we put

SBk (M,C) =SBk (R̂×
M ,1,C),

ABk (M,C) =ABk (R̂×
M ,1,C),
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where 1 is the trivial character.
Let π be an unitary cuspidal automorphic representation on GL2(A) with trivial central character and π′

the unitary irreducible cuspidal automorphic representation on G(A) with trivial central character attached
to π via Jacquet-Langlands correspondence. Let π′fin denote the finite constituent of π′. Let R := RN+ be an
Eichler order of level N+. The multiplicity one theorem together with our assumptions imply that π′fin can

be realized as a unique G(Af )-submodule SBk (π′fin) of SBk (C) and SBk (N+,C)[π′fin] := SBk (π′fin)∩SBk (N+,C)

is one dimensional. We fix a nonzero new form fπ′ ∈ SBk (N+,C)[π′fin]. Define the automorphic form

φπ′ ∈ ABk (N+,C) by

φπ′ := Ψ(v∗
0 ⊗ fπ′) (v∗

0 = D
k−2
2

K · v0).

Define the local Atkin-Lehner element τN
+

q ∈ G(Qq) by τN
+

q = J for q|∞N−, τN
+

q = 1 for finite place q ∤ N

and τN
+

q =

(
0 1
−N+ 0

)
if q|N+. Let τN

+
:=
∏
q τ

N+

q ∈ G(A). Let Cl(R) be a set of representatives of

B×\B̂×/R̂×Q̂× in B̂× = G(Af ). Define the inner product of fπ′ by

⟨fπ′ , fπ′⟩R :=
∑

g∈Cl(R)

1

#Γg
· ⟨fπ′(g), fπ′(gτN

+
)⟩k (Γg := (B× ∩ gR̂×g−1Q̂×)/Q×).

Let ℓ ∤ N− be a rational prime. We recall the description of ℓ-adic modular forms on B×. Let A be a

OKl
-algebra. For an open compact subgroup U ⊂ R̂×, we define the space of ℓ-adic modular forms of weight

k and level U by

SBk (U,A) :=
{
f̂ : B̂ → Lk(A)

∣∣∣ f̂(αgu) = ρk(u
−1
ℓ )f̂(g), α ∈ B×, u ∈ UQ̂

}
.

Also we write SBk (N+, A) := SBk (R̂×, A). Let λ and l be the primes of Q and K induced by ιℓ respectively.

We let iKl
: B ↪→ M2(Kl) be the composition iKl

:= ιℓ ◦ iK . Define ρk,ℓ : B×
ℓ → AutLk(Cℓ) by

ρk,ℓ(g) := ρk(iKl
(g)).

By definition, ρk,ℓ is compatible with ρk,∞ in the sense that ρk,ℓ(g) = ρk,∞(g) for every g ∈ B×, and one
can check that

ρk,ℓ(g) = ρk(γliℓ(g)γ−1
l ), where γl :=

(√
β −

√
βθ

−1 θ

)
∈ GL2(Kl).

Here iℓ : Bℓ ≃M2(Qℓ) is the fixed isomorphism. If ℓ is invertible in A, there is an isomorphism:

SBk (N+, A) ∼= SBk (N+, A), f 7→ f̂(g) := ρk(γ
−1
l )ρk,ℓ(g

−1
ℓ )f(g).

Let Q(f) be the finite extension of Q generated by Fourier coefficients of the newform f = fπ ∈
Snew
k (Γ0(N)). Let O ⊂ Cℓ be the completion of the ring of integers of Q(f) with respect to λ = λ ∩ Q(f).

Fix a uniformizer λ in O. The O-module SBk (N+,O)[π′fin] := SBk (N+,O) ∩ SBk (N+,Cℓ)[π′fin] has rank one.

We say fπ′ ∈ SBk (N+,C)[π′fin] is λ-adically normalized if f̂π′ is a generator of SBk (N+,O)[π′fin] over O. This
is equivalent to the following condition:

f̂π′(g0) ̸≡ 0 (mod λ) for some g0 ∈ G(Af ).

Now we define the theta elements. For a positive integer m, let Gm = K×\K̂×/Ô×
K,m be the Picard group

of the order OK,m = Z+mOK . We identify Gm with the Galois group of the ring class field Km of conductor
m over K via geometrically normalized reciprocity law.

Denote by [ · ]m : K̂× → Gm, a 7→ [a]m the natural projection map. We consider the automorphic form
φπ′ = Ψ(v∗

0 ⊗ fπ′). It is easy to see that the function

φ̂π′ : K̂× → C, a 7→ φ̂π′(a) := φπ′(xm(a))

factors through Gm, so we can extend φ̂π′ linearly to be a function φ̂π′ : C[Gm] → C. Let Pm := [1]m ∈ Gm
be the distinguished Gross point of conductor m. We put

φ̂π′(σ(Pm)) = φπ′(xm(a)) if σ = [a]m ∈ Gm.



6 MASATAKA CHIDA

We define the theta element Θ(fπ′) ∈ C[Gm] by

Θ(fπ′) :=
∑
σ∈Gm

φ̂π′(σ(Pm)) · σ.

Then we have the following special value formula.

Proposition 1.1. Let χ be a character of Gm. Then we have

χ(Θ(fπ′)2) = Γ(k/2)2 · L(fπ/K, χ, k/2)

Ωπ,N−
· (−1)

k
2 ·m ·Dk−1

K · (#OK/2)2

2

√
−DK

−1
· χ(N+),

where

Ωπ,N− =
4k−1πk||fπ||Γ0(N)

⟨fπ′ , fπ′⟩R
is the λ-normalized period for f .

Proof. This formula is a special case of Hung’s result [15, Proposition 5.3]. Also see [8, Proposition 4.3] for
the case that χ is an unramified character. □

2. Selmer groups for modular forms

2.1. Definition of Selmer groups. First we recall the definition of Selmer groups following Bloch-Kato
[5]. Let f be a cuspidal Hecke eigenform of weight k with respect to Γ0(N). Let Q(f) denote the Hecke field
generated by eigenvalues {aq(f)} of Hecke operators {Tq}. Let λ be the prime of Q(f) above the prime ℓ
induced by the fixed embedding ιℓ. Denote E = Q(f)λ. Also we denote the integer ring of E by O and the
uniformizer by λ and write On = O/λnO. Then there exist a 2-dimensional Galois representation

ρf = ρf,λ : GQ = Gal(Q/Q)→ GL2(E)

such that det(1 − ρf (Frobq) · X) = 1 − aq(f)X + qk−1X2 for any prime q satisfying q ∤ ℓN . Let Vf be

the representation space of ρf ⊗ ε
2−k
2

ℓ , where εℓ : Gal(Q/Q) → Z×
ℓ is the ℓ-adic cyclotomic character.

We choose a GQ-stable O-lattice Tf in Vf , and denote Af = Vf/Tf . Then there is an exact sequence

0→ Tf
i→ Vf

pr→ Af → 0.
For a finite extension F/Qp, Bloch-Kato [5] defined the finite part of Galois cohomology groups by

H1
f (F, Vf ) :=

{
Ker

[
H1(F, Vf )→ H1(F ur, Vf )

]
ℓ ̸= p,

Ker
[
H1(F, Vf )→ H1(F, Vf⊗QpBcris)

]
ℓ = p,

where Bcris is the p-adic period ring defined by Fontaine and F ur is the maximal unramified extension of F .
Also we denote

H1
f (F, Tf ) = i−1(H1

f (F, Vf ))

and

H1
f (F,Af ) = Im

[
H1
f (F, Vf ) ↪→ H1(F, Vf )

pr−→ H1(F,Af )
]
.

For a number field F , we define the λ-part of the Selmer group of f by

Sel(F,Af ) = Ker

[
H1(F,Af )→

∏
v

H1(Fv, Af )

H1
f (Fv, Af )

]
.

We also define

H1
f (F, Vf ) = Ker

[
H1(F, Vf )→

∏
v

H1(Fv, Vf )

H1
f (Fv, Vf )

]
.

Moreover we set Af,n = Af [λn] = Ker[Af
λn→ Af ] and Tf,n = Tf/λ

nTf . Then there exists a Galois equivariant
bilinear pairing Tf × Tf → O(1) such that the induced pairings on Tf,n ∼= Af,n are non-degenerate for all n.
For details, see Nekovář [24, Proposition 3.1].
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Proposition 2.1. The pairing above induces the local Tate pairing

⟨ , ⟩v : H1(Fv, Tf )×H1(Fv, Af )→ H2(Fv, E/O(1)) ∼= E/O,

⟨ , ⟩v : H1(Fv, Tf,n)×H1(Fv, Af,n)→ H2(Fv,On(1)) ∼= On,
for each place v of F . The local Tate pairing is perfect and satisfies the following properties.

(1) The pairing ⟨ , ⟩v makes H1
f (Fv, Tf ) and H1

f (Fv, Af ) exact annihilators of each other at any place v.

(2) If x and y belong to H1(F,Af,n), then∑
v

⟨x, y⟩v = 0,

where the sum is over all places v of F but is a finite sum.

Proof. See Besser [4, Proposition 2.2]. □

Definition 2.2. For each place v, we define H1
f (Fv, Af,n) to be the preimage of H1

f (Fv, Af ) in H1(Fv, Af,n).
Then we let

Sel(F,Af,n) = Ker

[
H1(F,Af,n)→

∏
v

H1(Fv, Af,n)

H1
f (Fv, Af,n)

]
.

Also we define H1
f (Fv, Tf,n) to be the image of H1

f (Fv, Tf ) in H1(Fv, Tf,n). Moreover we define the singular

part of local cohomology group H1
sing(Fv, Tf,n) to be the quotient

H1
sing(Fv, Tf,n) =

H1(Fv, Tf,n)

H1
f (Fv, Tf,n)

.

If v does not divide N , then we have

H1
sing(Fv, Tf,n) = H1(F ur, Tf,n)GFv .

By Proposition 2.1, H1
f (Fv, Af,n) and H1

sing(Fv, Tf,n) are the Pontryagin dual of each other.
For each prime q and GQ-module M , we denote

H1
f (Fq,M) =

⊕
v|q

H1
f (Fv,M)

and

H1
sing(Fq,M) =

⊕
v|q

H1
sing(Fv,M).

Lemma 2.3. Let q be a prime which splits in K. Then H1
sing(Km,q, Tf,n) = 0 for sufficiently large m.

Proof. This lemma follows from the same argument of Proof of [3, Lemma 2.4]. □

2.2. Euler system argument. Here we give a generalization of the Euler system argument introduced by
Bertolini-Darmon [3] to the case of higher weight modular forms.

Definition 2.4. A prime p is said to be n-admissible if

(1) p does not divide Nℓ [Km : K].
(2) p is inert in K.
(3) λ does not divide p2 − 1.

(4) λn divides p
k
2 + p

k−2
2 − ε · ap(f), where ε = ±1.

Lemma 2.5. Let p be an n-admissible prime. Then H1
f (Km,p, Af,n) and H1

sing(Km,p, Tf,n) are both isomor-

phic to On[Gm]. In particular, the χ-part of these groups are both isomorphic to On.

Proof. This is a direct generalization of [3, Lemma 2.6]. □
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Define the map ∂p to be the composition of the maps

H1(Km, Af,n)→ H1(Km,p, Af,n)→ H1
sing(Km,p, Af,n).

If ∂p(κ) = 0 for κ ∈ H1(Km,p, Af,n) (resp. H1(Km,p, Tf,n))), let

vp(κ) ∈ H1
f (Km,p, Af,n) (resp. H1

f (Km,p, Tf,n))

denote the natural image of κ under the restriction map ∂p.

Theorem 2.6 ([9], Theorem 6.3). Let s ∈ H1(Km, Af,n) be a non-zero element. Then there exist infinitely
many n-admissible primes p such that ∂p(s) = 0 and vp(s) ̸= 0.

Definition 2.7. For a prime p, we define the compactified Selmer group H1
p (Km, Tf,n) to be

H1
p (Km, Tf,n) = Ker

H1(Km, Tf,n)→
∏
v∤p

H1(Km,v, Tf,n)

H1
f (Km,v, Tf,n)

 .
Theorem 2.8. Let t be a positive integer. Suppose that for all but finitely many n-admissible primes p there
exist an element κp ∈ H1

p (Km, Tf,n+t)
χ such that λt−1∂p(κp) ̸= 0. Then λnSel(Km, Af,n+t)

χ = 0

Proof. Assume that there exist an element s in Sel(Km, Af,n+t)
χ satisfying λns ̸= 0. By Theorem 2.6 and

the assumption, we can take a n+ t-admissible prime p satisfying the following properties simultaneously:

(1) vp(λ
ns) ̸= 0 and ∂p(λ

ns) = 0.
(2) there exist an element κp ∈ H1

p (Km, Tf,n+t)
χ such that λt−1∂p(κp) ̸= 0.

By the properties of the local Tate pairing, we have∑
q

⟨λt−1∂q(κp), vq(λ
ns)⟩q = 0.

Since H1
f (Km,q, Af,n)χ and H1

f (Km,q, Tf,n)χ are annihilators for each other, we have

⟨λt−1∂q(κp), vq(λ
ns)⟩q = 0 for q ̸= p.

Therefore ⟨λt−1∂p(κp), resp(λ
ns)⟩q = 0 by Proposition 3.1 (2). Since the local Tate pairing is perfect, the

assumption λt−1∂p(κp) ̸= 0 implies vp(λ
ns) = 0. This gives a contradiction. □

3. Review of vanishing cycles

In §4 and 5, we will use the theory of vanishing cycles in several important steps. Therefore, in this section
we briefly recall the theory of vanishing cycles following the exposition in Rajaei [30].

3.1. Vanishing cycles. Let R be a characteristic 0 henselian discrete valuation ring with residue field k
of characteristic p. Fix a uniformizer ϖ in R. Denote the fraction field by K and the maximal unramified
extension of K by Kur. Let X → S = SpecR be a proper and generically smooth curve and F a constructible
torsion sheaf on X whose torsion is prime to p. Let i : Xk → X, j : XK → X, i : Xk → XOKur and

j : XK → XOKur be the canonical maps. By the proper base change theorem and the Leray spectral

sequence for j, we have

RΓ(XK , j
∗
F ) = RΓ(XOKur , Rj∗j

∗
F )

≃→ RΓ(Xk, i
∗
Rj∗j

∗
F ).

Then the adjunction morphism gives ϕ : i∗F → i
∗
Rj∗j

∗
F . We define the vanishing cycles by

RΦF := Cone(ϕ),

and the nearby cycles by
RΨF := i

∗
Rj∗j

∗
F .

Then we have a distinguished triangle

→ i∗F → RΨF → RΦF
+1→ .

For i > 0, we have RiΦF = RiΨF . Let Σ be the set of singular points of Xk. Assume that a neighbourhood

of each singular point x is (locally) isomorphic to the subscheme of A2
S = S[t1, t2] with the equation t1t2 = ax

(denote ex := v(ax) > 0). When the special fiber Xk is reduced, Deligne [10] proved the sheaves RiΦF
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vanish for i ̸= 1 and R1ΦF is supported at Σ, and the specialization map H1(Xk,F ) → H1(XK ,F ) is
injective. Now we have the specialization sequence

0 −→ H1(Xk, i
∗F )(1) −→ H1(XK ,F )(1)

β−→
⊕
x∈Σ

(R1ΦF )x(1)

−→ H2(Xk, i
∗F )(1)

sp(1)−→ H2(XK ,F )(1) −→ 0.

Then we define the character group for the sheaf F on X by

X(F ) = Ker

[⊕
x∈Σ

R1ΦFx(1)→ Ker(sp(1))

]
,

so

(3.1) 0 −→ H1(Xk,F )(1) −→ H1(XK ,F )(1) −→ X(F ) −→ 0.

For x ∈ Σ, let (Xk)x be the henselization of Xk at x and Bx the set of two branches of Xk at x (i.e. the
irreducible components of (Xk)x). For x ∈ Σ, we define the module Z(x) and Z′(x) by

Z(x) := Coker
[
Z diag−→ ZBx

]
and

Z′(x) := Ker
[
ZBx sum−→ Z

]
.

Choose an ordering for Bx for each x ∈ Σ and define a base of Z′(x) by δ′x := (1,−1). Denote the dual
basis by δx ∈ Z(x). We denote Λ = Zℓ. For x ∈ Σ, one has H i

x(Xk, RΨΛ) = 0 for i ̸= 1, 2 and the trace

map gives an isomorphism H2
x(Xk, RΨΛ)

≃−→ Λ(−1) and H1
x(Xk, RΨΛ)

≃−→ Z(x) ⊗ Λ. Moreover we have

R1ΦΛx
≃−→ Z′(x)⊗ Λ. Therefore we have the perfect pairing

(R1ΦΛ)x ×H1
x(Xk, RΨΛ) −→ H2

x(Xk, RΨΛ)
≃−→ Λ(−1).

This pairing gives the cospecialization map

0 −→ H0(X̃k, RΨΛ) −→ H0(X̃k, i
∗Λ) −→

⊕
x∈Σ

H1
x(Xk, RΨΛ)

β′
−→ H1(XK ,Λ)−→H1(Xk, i

∗Λ) −→ 0,

where X̃k → Xk is the normalization map.

3.2. Monodromy pairing. Let ℓ be a prime different from p and let I be the inertia group. We consider
the map tℓ : I → Zℓ(1) which is defined by σ 7→ σ(ϖ1/ℓ)/ϖ1/ℓ, where ϖ is the uniformizer of R. For σ ∈ I
and x ∈ Σ, we define the variation map

Var(σ)x : (R1ΦΛ)x → H1
x(Xk, RΨΛ)

by a 7→ −extℓ(σ)(aδx)δx, and define the monodromy logarithm

Nx : (R1ΦΛ)x(1)→ H1
x(Xk, RΨΛ)

by Nx(tℓ(σ)a) = Var(σ)x(a) for a ∈ (R1ΦΛ)x and σ ∈ I. Then we have a commutative diagram

(R1ΦΛ)x(1)
≃−−−−→ Z′(x)⊗ ΛyNx

yϕx
H1
x(Xk, RΨΛ)

≃−−−−→ Z(x)⊗ Λ,
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where the right vertical map ϕx is given by δ′x 7→ −exδx. Moreover we define the map N by the following
diagram:

H1(XK ,Λ)(1) = H1(Xk, RΨΛ)(1)
β−−−−→

⊕
x∈Σ

(R1ΦF )x(1)yN y⊕
Nx

H1(XK ,Λ) = H1(Xk, RΨΛ)
β′

←−−−−
⊕
x∈Σ

H1
x(Xk, RΨΛ).

Then we have an explicit description of the monodromy operator N .

Theorem 3.1 (Picard-Lefschetz formula [11]). Under the notation as above, we have the following formula:

N(tℓ(σ)a) = (σ − 1)a for a ∈ H1(XK ,Λ) and σ ∈ I.

Let B be the set of irreducible components of Xk. Define the modules X and X̂ by the exact sequences

0 −→ X −→
⊕
x∈Σ

Z′(x) −→ ZB −→ Z −→ 0

and
0 −→ Z −→ ZB −→

⊕
x∈Σ

Z(x) −→ X̂ −→ 0.

Then the monodromy pairing
u : X⊗ X→ Z

is given by the diagram
X −−−−→

⊕
x∈Σ Z′(x)yu∗ y⊕

x∈Σ ϕx

X̂ ←−−−−
⊕

x∈Σ Z(x).

Also we have

X⊗ Λ = Im

[
H1(XK ,Λ)(1)→

⊕
x∈Σ

(R1ΦΛ)x(1)

]
and

X̂⊗ Λ = Coker

[
H0(X̃k,Λ)→

⊕
x∈Σ

H1
x(Xk, RΨΛ)

]
.

Therefore we obtain the diagram

H1(XK ,Λ)(1)
c−−−−→ X⊗ Λ −−−−→

⊕
x∈Σ

(R1ΦΛ)x(1)yN yu∗⊗Λ

y⊕
Nx

H1(XK ,Λ) ←−−−− X̂⊗ Λ ←−−−−
⊕
x∈Σ

H1
x(Xk, RΨΛ).

Note that the cokernel of u∗ is the group of connected components.
Let F be a locally constant Zℓ-sheaf on X. The cospecialization exact sequence is

0 −→ H0(X̃k, RΨF ) −→ H0(X̃k, i
∗F ) −→

⊕
x∈Σ

H1
x(Xk, RΨ(F ))

β′
−→ H1(XK ,F )−→H1(Xk, i

∗F ) −→ 0.

Now we define the cocharacter group by

X̂(F ) := Im(β′).

Then we have a canonical isomorphism (R1ΦF )x ≃ (R1ΦΛ)x⊗Fx and a natural map H1
x(Xk, RΨΛ)⊗Fx →

H1
x(Xk, RΨ(F )). These maps gives a generalization of monodromy pairing

λ : X(F )→ X̂(F )
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by composition of the maps

H1(XK ,F )(1) −−−−→ X(F ) −−−−→
⊕
x∈Σ

(R1ΦF )x(1)yN yλ y⊕
Nx⊗1

H1(XK ,F ) ←−−−− X̂(F ) ←−−−−
⊕
x∈Σ

H1
x(Xk, RΨF ).

Then the monodromy operator N is described by the Picard-Lefschetz formula:

N(tℓ(σ)a) = (σ − 1)a for a ∈ H1(XK ,F ) and σ ∈ I.

We define the component group by

Φ(F ) := Coker
[
λ : X(F )→ X̂(F )

]
.

4. Cohomology of Shimura curves

Let M be a positive integer and M = M+M− a integer decomposition of M such that M− > 1 is a square-
free product of an even number of primes and (M+,M−) = 1. Let B′ be the indefinite quaternion algebra
over Q with discriminant M−. Fix a prime p dividing M−. Let B be the definite quaternion algebra over

Q with discriminant M−/p. We fix a Q-embedding t′ : K ↪→ B′ and an isomorphism φB,B′ : B̂(p) ∼= B̂′(p).
Also we fix an Eichler order RM+ of level M+ in B.

4.1. Moduli interpretation of Shimura curves. Fix a maximal order OB′ of B′.
Let S be a Z[1/M ]-scheme. A triple (A, ι, C) is called an abelian surface with quaternionic multiplication

with level M+-structure over S if

(1) A is an abelian scheme over S of relative dimension 2,
(2) ι : OB′ → EndS(A) is an inclusion defining an action of OB′ on A,
(3) C is a subgroup scheme of A of order (M+)2 which is stable and locally cyclic under the action of
OB′ .

We denote by FM+,M− the functor from the category of schemes over Z[1/M ] to the category of sets
which associates to a scheme S to the set of isomorphism classes of abelian surfaces with quaternionic
multiplication with level M+-structure over S. If M− is strictly greater than 1, the functor FM+,M− is
coarsely representable by a scheme XM+,M− over Z[1/M ], with smooth fibers. The scheme XM+,M− is a
smooth projective geometrically connected curve over Z[1/M ].

Let d ≥ 1 be an integer relatively prime to M and S a Z[1/Md]-scheme. A quadruple (A, ι, C, ν) is called
an abelian surface with quaternionic multiplication by OB′ with level M+-structure and full level d-structure
if (A, ι, C) is a triple as above and

ν : (OB′/dOB′)S → A[d]

is an OB′-equivariant isomorphism from the constant group scheme (OB′/dOB′)S to the group scheme of
d-division points of A.

If d ≥ 4, we have a fine moduli scheme representing the functor FM+,M−,d from the category of schemes
over Z[1/Md] to the category of sets which associates to a scheme S to the set of isomorphism classes of
abelian surfaces with quaternionic multiplication with level M+-structure over S and full level d-structure.
We denote it by XM+,M−,d. Then the Shimura curve XM+,M−,d is a smooth projective curve over Z[1/Md].
We have a natural Galois covering

ψ : XM+,M−,d → XM+,M−

with Galois group Gd isomorphic to G′
d/{±1}, where

G′
d := (OB′/dOB′)× ≃ (R′/dR′)×

obtained by forgetting the level d-structure. We set

Ud =

{
g = (gv)v ∈ R̂×

M+

∣∣∣∣ gv ≡ (1 0
0 1

)
mod d if v|d

}
.
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The complex uniformization of the Shimura curve X = XM+,M−d is given by

X(C) = B′\(C \ R)× B̂′×/U ′
d,

where U ′
d = φB,B′(U

(p)
d )OB′

p
. For z′ ∈ C and b′ ∈ B̂′×, we will denote by [z′, b′]C the point on X(C)

represented by (z′, b′).
For a prime q dividing M+, we can consider a model of X = XM+,M−,d over Zq using a variant of the

moduli functor FM+,M−,d. The resulting canonical model XZq is a nodal model, that is,

(1) XZq is proper and flat over Zq, and its generic fiber is X,
(2) the irreducible components of the special fiber XFq are smooth, and the only singularities of XFq are

ordinary double points.

For the prime p which divides M−, one may define a model XZp of X over Zp via moduli scheme. The
model XZp is a nodal model. Moreover, the irreducible components of XFp are rational curves.

4.2. p-adic uniformization of Shimura curves. Let Hp be the Drinfeld’s p-adic upper half plane. Then

Cp-valued points of Hp are given by Hp(Cp) = P1(Cp) \ P1(Qp). Let Ĥp be a formal model of Hp and there

is a natural action of B× on Ĥp via ιp. Fix a nodal model XZp . Write X̂ for the formal completion of XZp

along its special fiber. Then X̂ is canonically identified with

B×\Ĥp⊗̂ZpẐur
p × B̂(p)×/U

(p)
d ,

where the action of b ∈ B× on Ẑur
p is given by Frob

ordpN(b)
p ([1, Theorem 5.2]). Let Xan be the rigid

analytification of X ⊗Qp, then Xan is identified with

B×\Hp⊗̂QpQ̂ur
p × B̂(p)×/U

(p)
d ,

and X(Cp) is identified with

B×\Hp(Cp)×B̂(p)×/U
(p)
d .

4.3. Bad reduction of Shimura curves. Fix a quadratic unramified extension Qp2 of Qp. We denote the

ring of integer of Qp2 by Zp2 and the residue field by Fp2 .For p|M−, the dual graph Gp(X) of the special
fiber of XZp2

is defined to be the finite graph determined by the following properties.

(1) The set of vertices V(Gp) is the set of irreducible components of special fiber XFp2
.

(2) The set of edges E(Gp) is the set of singular points of XFp2
.

(3) Two vertices v and v′ are joined by an edge if v and v′ intersect at the singular point e.

Then the dual graph Gp(X) is identified with Tp/Γ, where Tp = (Ep(Tp),Vp(Tp)) is the Bruhat-Tits tree for

PGL2(Qp), and the p-adic uniformization of X̂Zp induces the following identifications:

(1) The set E(Gp) is identified with the double coset space B×\B̂×/Ud(p), where

Ud(p) =

{
g = (gv)v ∈ Ud

∣∣∣∣ gp ≡ (∗ ∗0 ∗

)
mod p

}
.

(2) The set V(Gp) is identified with (B×\B̂×/Ud)× Z/2Z.

4.4. CM points on Shimura curves. Let z′ be a point in C \ R fixed by ι∞(K×) ⊂ GL2(R). We define
the set of CM points unramified at p on the Shimura curve X by

CMp−ur
K (X) =

{
[z′, b′]C

∣∣∣ b′ ∈ B̂′×, b′p = 1
}
⊂ X(Kab).

Let recK : K̂× → Gal(Kab/K) be the geometrically normalized reciprocity map. Then by Shimura’s
reciprocity law, we have

recK(a)[z′, b′]C = [z′, t′(a)b′]C.

Hence one has ιp : CMp−ur
K (X) ↪→ X(Kp).
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4.5. Ribet’s exact sequence for higher weight modular forms. Let k be a positive even integer. Let
Fk be the lisse ℓ-adic sheaf on the Shimura curve XM+,M−,d which is defined in Diamond-Taylor [13, §3].

We will use the sheaf F = Fk(
k−2
2 )⊗O.

Denote the character group and the cocharacter group associated to the Shimura curve XM+,M−,d and

the sheaf F by Xp(M+,M−, d) and X̂p(M+,M−, d). Also we denote by Φp(M
+,M−, d) the component

group. Let Σp = Σp(M
+,M−, d) be the set of singular points of the special fiber of XM+,M−,d at p.

We fix a prime q dividing M− such that q ̸= p. Let T be the Hecke algebra acting on the character
group Xp(M+,M−, d). Let T′ be the Hecke algebra acting on Xq(M+pq,M−/pq, d). Let T′′ be the Hecke

algebra acting on Xq(M+q,M−/pq, d)2 and let T̃ be the polynomial ring with Z-coefficient generated by

indeterminates T̃v for v ∤Md and Ũv for v|Md.

Proposition 4.1. Let m be a non-Eisenstein maximal ideal.

(1) (Ribet’s exact sequence) There is a Hecke equivariant exact sequences

0→ X̂q(M+q,M−/pq, d)2m → X̂q(M+pq,M−/pq, d)m → X̂p(M+,M−, d)m → 0

and

0→ Xp(M+,M−, d)m → Xq(M+pq,M−/pq, d)m → Xq(M+q,M−/pq, d)2m → 0.

(2) The action of U ′
p ∈ T′ on Xq(M+q,M−/pq, d)2 is given by (x, y) 7→ (T ′′

p x− p−
k−4
2 y, pk−1x).

Proof. These results are explained in Rajaei [30, §3.2]. □

The Hecke algebra T′ is isomorphic to the Hecke algebra acting on SBk (Ud,O) the space of quaternionic

modular forms on B of level Ud. The Hecke algebra T is isomorphic to the Hecke algebra acting on SB
′

k (U ′
d,O).

Also the Hecke algebra T′′ is isomorphic to the Hecke algebra acting on the space of quaternionic modular
forms on B′ of level U ′

d which are old at p.

Lemma 4.2. There is a canonical map

ωp : Ker [sp(1)]→ Φp(M
+,M−, d),

where sp(1) : H2(XM+,M−,d ⊗ Fp2 ,F )(1)→ H2(XM+,M−,d ⊗Qp2 ,F )(1) is the specialization map.

Proof. For c ∈ Ker (sp(1)), let c̃ be a lift of c by the map⊕
x∈Σp

(R1ΦF )x(1)→ H2(XM+,M−,d ⊗ Fp2 ,F )(1).

Then the monodromy pairing induces the map⊕
x∈Σp

(R1ΦF )x(1)→
⊕
x∈Σp

H1
x(XM+,M−,d ⊗ Fp2 , RΨF ).

Also we have a natural surjective map

H1
x(XM+,M−,d ⊗ Fp2 , RΨF )→ X̂p(M+,M−, d)→ Φp(M

+,M−, d).

Moreover one can see that the image of c̃ in the component group does not depend on the choice of lift of
c. Then we define ωp(c) by the natural image of c̃. □

Proposition 4.3. Let m be a non-Eisenstein maximal ideal. Then the map ωp induces a T̃-equivariant
isomorphism

ωp : Xq(M+q,M−/pq, d)m × Xq(M+q,M−/pq, d)m/((U
′
p)

2 − pk−2)→ Φp(M
+,M−, d)m.

Proof. Write Xp for Xp(M+,M−, d)m, X′
q for Xq(M+pq,M−/pq, d)m and X′′

q for Xq(M+q,M−/pq, d)m. Let

λ′′q : X′′
q × X′′

q → X̂′′
q × X̂′′

q

and

λ′q : X′
q → X̂′

q
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be the monodromy pairings, hence the cokernel is Φ′′
q × Φ′′

q and Φ′
q, where Φ′′

q = Φq(M
+q,M−/pq)m and

Φ′
q = Φq(M

+pq,M−/pq)m. Let

i : Xp → X′
q

be the map as in the second exact sequence of Proposition 6.5 (1) and

(4.2) δ∨∗ : X̂′′
q × X̂′′

q → X̂′
q/λ

′
q(i(Xp))

the map obtained by the first exact sequence of Proposition 6.5 (1).Then the cokernel of δ∨∗ is Φp =
Φp(M

+,M−). Let

j0 : X′′
q × X′′

q → X̂′
q/λ

′
q(i(Xp)).

be the composition of the map λ′′q with ξ : X̂′′
q × X̂′′

q → X̂′
q as in the first exact sequence of Proposition 6.5

(1). Moreover we define the map σ : X′′
q × X′′

q → X′′
q × X′′

q by

(x, y) 7→ ((p+ 1)x+ T ′′
p y, p

k−2
2 Tpx+ (p+ 1)y).

One obtains a commutative diagram

0 −−−−→ X′′
q × X′′

q

λq−−−−→ X̂′′
q × X̂′′

q −−−−→ Φ′′
q × Φ′′

q −−−−→ 0yσ yδ∨∗ y
0 −−−−→ X′′

q × X′′
q

j0−−−−→ X̂′
q/λ

′
q(i(Xp)) −−−−→ Φ′

q −−−−→ 0.

In fact Φ′
q = Φ′′

q = 0. A direct calculation shows that the composition of the morphism

(x, y) 7→ (−p
k−2
2 x, T ′′

p x− p−
k−2
2 y)

of X′′
q × X′′

q with σ gives the action of (U ′
p)

2 − pk−2. By the snake lemma, we have the isomorphism

X′′
q × X′′

q/((U
′
p)

2 − pk−2)→ Φp(M
+,M−, d)m.

□
4.6. Integral Hodge theory following Jordan-Livné. In this section, we give a different description
of the component groups following Jordan-Livné [20]. Let XZp be the integral model of the Shimura curve
XM+,M−,d over Zp discussed in the beginning of §6. Let Xs be the special fiber of Xur

Zp
= XZp ⊗Zur

p and Xη

the generic fiber. Define

C0(Gp,F ) :=
⊕
y∈I

Fy (∼= H2(Xs,F )(1))

and

C1(Gp,F ) :=
⊕
x∈Σp

Fx

∼= ⊕
x∈Σp

(R1ΦF )x(1)

 ,

where Gp = Gp(X) is the dual graph of the special fiber of XZp and I is the set of irreducible components of
Xs. We fix an orientation of Gp, that is, a pair of maps s, t : E(Gp)→ V(Gp) such that s(e) and t(e) are the
end of the edge e. Consider the map

d : C0(Gp,F )→ C1(Gp,F )

defined by (y 7→ fy) 7→ (x 7→ ft(x) − fs(x)), where fy ∈ Fy and ft(x), fs(x) ∈ Fx = H0
x(s(x), r∗F)(1) =

H0
x(t(x), r∗F )(1) (where r∗ : X̃s → Xs is the normalization map). Note that r∗F is a constant sheaf on

t(x) ∪ s(x). Then we define the cohomology H i(Gp,F ) by the exact sequence

0→ H0(Gp,F )→ C0(Gp,F )
d→ C1(Gp,F )→ H1(Gp,F )→ 0.

On the other hand, we consider the map

δ : C1(Gp,F )→ C0(Gp,F )

defined by (x 7→ fx) 7→ (y 7→
∑

t(x)=y fx). The Laplacian □ = □i : Ci(Gp,F ) → Ci(Gp,F ) is defined by

□i = dδ + δd. Hence we have □0 = δd and □1 = dδ. A cochain c is called harmonic if □ic = 0. Let Hi be
the O-module of all harmonic cochains.
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Definition 4.4. We set
Φ′
p(M

+,M−, d) := H1(Gp,F )/H1

and
Φ′′
p(M

+,M−, d) := δC1(Gp,F )/□0C
0(Gp,F ).

Remark 4.5. The definition of Φ′′ is different from the notation used in Jordan-Livné [20]. The definition
of Φ′ corresponds to the Grothendieck’s description of component group and the definition of Φ′′ corresponds
to the Raynaud’s description of component group.

Lemma 4.6 ([20], Proposition 2.14). There are canonical identifications

Φ′
p(M

+,M−, d) ∼= Φ′′
p(M

+,M−, d) ∼= Φp(M
+,M−, d).

In particular, the map ωp is surjective.

Now for each irreducible component Y we fix a non-singular point PY on Y . Let x̃ be a closed point
of Xη such that x = x̃ mod p is not a singular point. We may assume that x = PY for some irreducible
component Y . Denote

H2
x̃(Xη,F )(1)0 := Ker

[
H2
x̃(Xη,F )(1)→ H2(Xη,F )(1)

]
.

Lemma 4.7. There exists a natural map

H2
x̃(Xη,F )→ H2

x(Xs, RΨF ).

Proof. Let z be the Zur
p -valued point of X determined by x̃. Let j

′
: x̃ → z, i

′
: x → z and ix̃ : x̃ → Xη be

canonical maps. Also define ix and iz similarly. Then by definition one has

H2
x̃(Xη, j

∗
F ) = H2(x̃, Ri

!
x̃j

∗
F )

and this is isomorphic to H2(x, i
′∗
Rj

′
∗Ri

!
x̃j

∗
F ). It is known that the last cohomology is isomorphic to

H2(x, i
′∗
Ri

!
zRj∗j

∗
F ) (See Fu [14, Proposition 8.4.9]). Therefore using adjunction morphism we have a

natural map

H2(x, i
′∗
Ri

!
zRj∗j

∗
F )→ H2(x,Ri

!
xi

∗
Rj∗j

∗
F ) = H2

x(Xs, i
∗
Rj∗j

∗
F ).

□
We define the reduction map redp : H2

x̃(Xη,F )(1)0 → H2(Xs, i
∗F )(1) by the composition of the maps

H2
x̃(Xη,F )(1)0 −→ H2

x(Xs, RΨF )(1)
≃−→ H2

x(Xs, i
∗F )(1)

↪→
⊕
Y ∈I

H2
PY

(Xs, i
∗F )(1)

≃−→ H2(Xs, i
∗F )(1),

where the first map is obtained by the above lemma and the second map is the inverse of the specialization
map

sp(1)x : H2
x(Xs, i

∗F )(1)→ H2
x(Xs, RΨF )(1)

(since x is a smooth point, sp(1)x is an isomorphism). Then the image of the reduction map is contained in
the kernel of the specialization map

sp(1) : H2(Xs, i
∗F )(1)→ H2(Xs, RΨF )(1).

Using the identification of component groups, we define the map

dp : H2
x(Xη,F )(1)0 → Φp(M

+,M−, d)

by the composition of the maps

H2
x(Xη,F )(1)0

redp−→ Ker [sp(1)]
≃−→ δC1(Gp,F )→ Φ′′

p(M
+,M−, d) ∼= Φp(M

+,M−, d).

Combining these facts, we have the following proposition.

Proposition 4.8. For c ∈ H2
x̃(Xη,F )(1), we have dp(c) = ωp(redp(c)).
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5. Level raising of modular forms

In this section, we prove a level raising result for modular forms on quaternion algebras.

5.1. A freeness result on the space of modular forms. Let N be a positive integer and N = N+N− a

integer factorization of N , where N− is a square-free product of an odd number of primes. Let f̂ : B×\B̂× →
Lk−2(O) be a λ-normalized ℓ-adic modular form corresponding to f via Jacquet-Langlands correspondence.
Let q be a prime number dividing N− and p a prime number which does not divide N . Let B′ be the indefinite
quaternion algebra over Q with discriminant pN−. Choose a positive integer d such that (d,Np) = 1 and

ℓ ∤ #(OB′/dOB′)×. Write TBk (N+) (resp. TB′
k (N+)) for the Hecke algebra acting on the space of ℓ-adic

modular forms SBk (N+,O) (resp. SB′
k (N+,O)). Set T = TBk (N+)O and T[p] = TB′

k (N+)O. We denote by

tv and uv (resp. Tv and Uv) the Hecke operators in T (resp. T[p]). The modular form f̂ yields a surjective
homomorphism

λf : T→ On.
We write If for the kernel of λf , and m for the unique maximal ideal of T containing If .

Proposition 5.1. Assume that the residual Galois representation ρf satisfies (CR+). Then SBk (N+,O)m
is a cyclic Tm-module.

Proof. Since this proposition follows from the same argument with [8, Proof of Proposition 6.8] and [33,
§2 and §3], we only give a sketch of the proof. Let M+ be an integer such that (M+, N−) = 1 and let
M = M+N−. Write S(M) = SBk (M+,O). Let T be the Hecke algebra generated over O by Hecke operators
Tq for q ∤M and Uq for q |M in EndO S(M). Let λπ′ : T(N)→ O be the O-algebra homomorphim induced
by π′. We denote byN(ρf ) the Artin conductor of ρf . Let N−

1 be the product of prime factors of N(ρf ).

We set N∅ = N(ρf )N−
1 . By the level lowering and raising, there exists a modular lifting λ∅ : T → O such

that λ∅(Tq) = λπ′(Tq) mod mO for all q ∤ N . We write

N = N∅
∏
q

qmq .

Let Σ be a set of prime factors of N/N∅ and set NΣ = N∅
∏
q∈Σ q

mq . Let mΣ be the maximal ideal of

T(NΣ) generated by mO, Tq − λ∅(Tq) for q ∤ NΣ and Uq − λπ′(Uq) for q | NΣ. Let TΣ = T(NΣ)mΣ be the
localization at mΣ. Similarly, we denote the localization of S(NΣ) at mΣ by SΣ. By [8, Lemma 6.3], we

have a surjection TΣ ↠ T∅. Let λΣ : TΣ → T∅
λ∅−→ O be the composition and IλΣ the kernel of λΣ. Set

SΣ[λΣ] = {x ∈ SΣ | IλΣx = 0} and SΣ[λΣ]⊥ = {x ∈ SΣ ⊗O E | ⟨x, y⟩RΣ
= 1 for all y ∈ SΣ[λΣ]}, where

RΣ = RNΣ/N− is an Eichler order of level NΣ/N
−. Then SΣ[λΣ]⊥ ⊃ SΣ[λΣ]. We define the congruence

module of λΣ by C(NΣ) = SΣ[λΣ]⊥/SΣ[λΣ] and the congruence ideal of λΣ by ηΣ = λΣ(AnnTΣ
(IλΣ)).

Let MFQℓ,O,k denote the abelian category whose objects are finite length O-modules D together with a
distinguished submodule D0 and FrobQℓ

⊗ 1-semilinear maps φ1−k : D → D and φ0 : D0 → D such that

• φ1−k|D0 = ℓk−1φ0 and
• Imφ1−k + Imφ0 = D.

Then there is a fully faithful, Zp-length preserving, O-additive, contravariant functor M from MFQp,O,k
to the category of continuous O[Gal(Qp/Qp)]-modules with essential image closed under the formation of
sub-objects.

Consider the functor DΣ from the category of local Noetherian complete O-algebra with the residue field
kO = O/mO to the category of sets which sends A with the maximal ideal mA to the isomorphism class of
deformations ρ : Gal(Q/Q)→ GL2(A) of ρf satisfying

(1) det ρ = εℓ, where εℓ : Gal(Q/Q)→ Z×
p is the ℓ-adic cyclotomic character,

(2) ρ is minimally ramified,
(3) for each finite length quotient A/I of A the O[Gal(Qp/Qp)]-module (A/I)2 is isomorphic to M(D)

for some object D of MFQp,O,k,

(4) for q||NΣ/N∅, there exists a unramified charcter δq : Gal(Qq/Qq)→ A× such that

ρ|Gal(Qq/Qq)
∼
(
δ−1
q εℓ ∗
0 δq

)
and δq(Frobq) ≡ 1 mod mA, and
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(5) if q | N−
1 , then ρ|Gal(Qq/Qq)

satisfies

ρ|Gal(Qq/Qq)
∼
(
±εℓ ∗
0 ±1

)
with ∗ ∈ mA.

Under the assumption (CR+), it is known that DΣ is represented by the universal deformation

ρRΣ
: Gal(Q/Q)→ GL2(RΣ).

Then the universality of RΣ gives rise to surjections of O-algebras RΣ ↠ R∅ and RΣ ↠ TΣ by [8, Lemma
6.5] and [33, Lemma 2.1]. Let ℘Σ be the kernel of the O-algebra homomorphism

RΣ → R∅ → T∅
λ∅−→ O.

By the Taylor-Wiles argument in [33, §2], we deduce that S(N∅)m∅ is a free T∅-module of rank one and

#(℘∅/℘
2
∅) = #C(N∅) = #(O/η∅).

Using the argument in [33, §3], we have

#(℘Q2/℘
2
Q2

) = #C(NQ2) = #(O/ηQ2),

where Q2 is the set of prime factors q | N/N∅ with mq = 2. By [8, Lemma 6.4] and [8, Corollary 6.7], the
above equality implies

#(℘Σ/℘
2
Σ) | #C(NΣ) | #(O/ηΣ).

Then the proposition follows from [12, Theorem 2.4]. □

Proposition 5.2. Let ψf : SBk (N+,O) ↠ O be the map defined by h 7→ ψf (h) := ⟨f̂ , h⟩R, where R = RN+.
Then ψf induces an isomorphism

ψf : SBk (N+,O)/If
≃→ On.

Proof. By Proposition 5.1, SBk (N+,O)m is a cyclic Tm-module. Hence SBk (N+,O)/If is generated by a
modular form g. Since ψg is surjective and Hecke operators in T are self-adjoint with respect to the pairing
⟨ , ⟩R, we have that ψf (g) = ⟨f, g⟩R ∈ O×

n and the annihilator of g in T is If . Therefore we have an

isomorphism SBk (N+,O)/If ∼= T/If ∼= On. □

5.2. Level raising.

Theorem 5.3. Let p be an n-admissible prime. Assume that the residual Galois representation ρf satisfies

(CR+). Then

(1) There exists a surjective homomorphism

λ
[p]
f : T[p] → On

such that λ
[p]
f (Tq) = λf (tq) for all q ∤ Np, λ[p]f (Uq) = λf (uq) for all q | N , and λ

[p]
f (Up) = ε · p

k−2
2 ,

where ε = ±1 is such that λn divides p
k
2 + p

k−2
2 − ε · λf (tp).

(2) Let I [p]f ⊂ T[p] denote the kernel of the homomorphism λ
[p]
f and Φp(N

+, N−p) is the component group

associated to the Shimura curve XN+,N−p and the lisse sheaf F . Then there is a group isomorphism

Φp(N
+, N−p)/I [p]f ∼= S

B
k (N+,O)/If

ψf∼= On.

Proof. Let B′ be the indefinite quaternion algebra over Q of discriminant N−/q and R′
N+q an Eichler order

of level N+q. Denote the Shimura curve associated to U ′
d by XU ′

d
. Also we write the character group for the

Shimura curve XU ′
d

and the lisse ℓ-adic sheaf F at q by Xq(U ′
d). Let Σq(U

′
d) be the set of singular points on

the special fiber of XU ′
d
. Moreover since Σq(U

′
d) is identified with B×\B̂×/Ud, we obtain the identification⊕

x∈Σq(U ′
d)

(R1ΦF)x ∼=
⊕

x∈Σq(U ′
d)

Lk(O) ∼= SBk (Ud,O).
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Taking R̂×
N+/Ud-invariant part, we obtain the Hecke-equivariant isomorphism⊕

x∈Σq

(R1ΦF)x ∼= SBk (N+,O),

where Σq is the set of singular points on the special fiber of a model of XN+q,N−/q. By [30, Proposition 5],
we have

Xq(N+q,N−/q)m ∼=

⊕
x∈Σq

(R1ΦF)x


m

.

Therefore by Proposition 5.1 one obtains the isomorphism

Xq(N+q,N−/q)2/If ≃ O2
n.

We denote by T ′
v and U ′

v the Hecke operators in T[p]. There is an action of T[p] on Xq(N+q,N−/q)2 induced
by tv for v ∤ Np and uv for v | N and the Hecke operator U ′

p acts via the formula

(x, y) 7→ (T ′′
p x− p−

k−4
2 y, pk−1x).

Since p is n-admissible, the action of tp modulo If is given by ε · (p
k
2 + p

k−2
2 ). Then the determinant of

U ′
p + ε · p

k−2
2 is 2pk(1 + p). Hence U ′

p + ε · p
k−2
2 is invertible on Xq(N+q,N−/q)2/If . These facts implies the

isomorphism

Xq(N+q,N−/q)2/⟨If , U ′
p − ε · p

k−2
2 ⟩ ≃ Xq(N+q,N−/q)2/⟨If , (U ′

p)
2 − pk−2⟩ ≃ On.

Thus, the action of T[p] on Xq(N+q,N−/q)2/⟨If , U ′
p − ε · p

k−2
2 ⟩ is given via a surjective homomorphism

λ′f : T[p] → On.

Denote the kernel of λ′f by I ′f . Then Proposition 6.5 and the residual irreducibility of m implies the existence
of an isomorphism

Φp(N
+, N−p)/I ′f ≃ Xq(N+q,N−/q)2/⟨If , (U ′

p)
2 − pk−2⟩.

This shows that λ′f factors through T which gives λ
[p]
f and Φp(N

+, N−p)/I [p]f is isomorphic to On. Let m[p]

be the maximal ideal of T[p] containing I [p]f . The embedding SBk (N+,O)m[p] ↪→ SBk (N+,O)⊕2
m[p] given by

x 7→ (x, 0) induces an isomorphism

SBk (N+,O)m[p]/(εTp − p
k
2 − p

k−2
2 ) ∼= SBk (N+,O)⊕2

m[p]/(U
′
p − εp

k−2
2 ).

Therefore we have

Φp(N
+, N−p)/I [p]f ∼= S

B
k (N+,O)/If

ψf∼= On.
□

Write X
[p]
d for the Shimura curve XN+,N−p,d, Xd,p for Xp(N+, N−p, d), X̂d,p for X̂p(N+, N−p, d) and

Φd,p for Φp(N
+, N−p, d). Also write X [p] for the Shimura curve XN+,N−p, Xp for Xp(N+, N−p), X̂p for

X̂p(N+, N−p) and Φp for Φp(N
+, N−p).

Proposition 5.4. Under the assumption (CR+), the Galois representations H1(X [p] ⊗ Q,F )(1)/I [p]f and

Tf,n are isomorphic.

Proof. Let m
[p]
f be the maximal ideal containing I [p]f . Then T[p]/m

[p]
f is isomorphic to O1 = Fλ. First we will

show that H1(X [p] ⊗Q,F )(1)/m
[p]
f is isomorphic to Tf,1.

By (3.1) and the fact H1(X [p]⊗Fp2 ,F ) ∼= X̂p (see Rajaei [30, p.52 (3.5)]), one obtains an exact sequence

(5.3) 0→ (X̂p/m
[p]
f )⊗ µλ → H1(X [p] ⊗Qp2 ,F )/m

[p]
f ⊗ µλ → Xp/m

[p]
f → 0,

where µλ = Zp(1)⊗O/λO. Taking the Galois cohomology over Qp2 , we have the exact sequence

Xp/m
[p]
f →H

1(Qp2 , (X̂p/m
[p]
f )⊗ µλ)→ H1(Qp2 ,H

1(X [p] ⊗Qp2 ,F )/m
[p]
f ⊗ µλ).
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Since p is an admissible prime, λ does not divide p2 − 1, hence we have the identification

H1(Qp2 , X̂p/mfp ⊗ µλ) ∼= X̂p/m
[p]
f .

By the main theorem of [6] and Eichler-Shimura relation, H1(X [p] ⊗ Q,F )(1)/m
[p]
f is semisimple over

F[Gal(Q/Q)], we have that

H1(X [p] ⊗Q,F )(1)/m
[p]
f
∼= (Tf,1)

r

for some r ≥ 1. Therefore H1(Qp2 ,H
1(X [p] ⊗Qp2 ,F )(1)/m

[p]
f ) is isomorphic to H1(Qp2 , Tf,1)

r. By Lemma

2.5, the F-vector space H1(Qp2 , Tf,1)
r is 2r-dimensional. We claim that

(5.4) dimFXp/m
[p]
f ≥ r.

To see this, assume that dimFXp/m
[p]
f ≤ r − 1. Then we have dimF X̂p/m

[p]
f ≥ r + 1 by the exact sequence

(5.3), which implies dimF Φp/m
[p]
f ≥ 2 by the definition of the component group. This gives a contradiction.

By the Picard-Lefschetz formula, the monodromy operator N is described as N(a⊗ tℓ(σ)) = σ(a)− a for

all a ∈ H1(X [p] ⊗ Qp2 ,F )(1)/m
[p]
f and σ ∈ I. One notices that the monodromy operator N acts on each

piece Tf,1, thus N defines the map N : Tf,1(−1)⊗ µλ → Tf,1(−1).

Lemma 5.5. The map N : Tf,1(−1)⊗µλ → Tf,1(−1) is the zero map. Equivalently, the monodromy pairing

is the zero map. In particular, X̂p/m
[p]
f is isomorphic to Φp/m

[p]
f .

Proof. If N is non-trivial, we have the inequality

dimF Im
[
N : H1(Qp2 , Tf,1(−1))r → H1(Qp2 , Tf,1)

r
]
≥ r.

The definition of the monodromy pairing implies

Im(N) = Im
[
λp : Xp/m

[p]
f → X̂p/m

[p]
f

]
,

where λp is the monodromy pairing and its cokernel is the component group Φp/m
[p]
f . Since

dimF X̂p/m
[p]
f − dimF Im(N) = dimF Φp/m

[p]
f = 1,

we have the inequality dimF X̂p/m
[p]
f ≥ r + 1 by (5.4). Hence one obtains

dimFH
1(X [p] ⊗Qp2 ,F )(1)/m

[p]
f ≥ 2r + 1.

This gives a contradiction. □
Since λ ∤ (p2 − 1), we have the identifications

H1(Qp2 ,Xp/m
[p]
f ) = Homunr(Gal(Qp2/Qp2),Xp/m

[p]
f ) = Hom(O/λO,Xp/m[p]

f ).

Therefore we have the exact sequence

(5.5) Φp/m
[p]
f → H1(Qp2 , H

1(X [p] ⊗Qp2 ,F )(1)/m
[p]
f )→ H1

unr(Qp2 ,Xp/m
[p]
f ),

where Φp/m
[p]
f is a quotient of Φp/m

[p]
f . Recall that H1(Qp2 , H

1(X [p] ⊗ Qp2 ,F )(1)/m
[p]
f ) and it can be

decomposed as the direct sum of two r-dimensional subspaces. Furthermore, one of the subspace is generated
by unramified cohomology classes and the other by ramified cohomology classes. By Theorem 5.3, the group

Φp/m
[p]
f is isomorphic to O/λO. Hence by the exact sequence (5.5) we have r = 1 and Φp/m

[p]
f
∼= Φp/m

[p]
f .

Therefore H1(X [p] ⊗Q,F )(1)/m
[p]
f is isomorphic to Tf,1.

Next we show that H1(X [p]⊗Q,F )(1)/I [p]f is isomorphic to Tf,n. There is a natural Gal(Q/Q)-equivariant
projection

H1(X [p] ⊗Q,F )(1)/I [p]f → H1(X [p] ⊗Q,F )(1)/m
[p]
f .

By the exact sequence

0→ X̂p(1)/I [p]f → H1(X [p] ⊗Qp2 ,F )(1)/I [p]f → Xp/I [p]f → 0
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and the fact that the group Φp/I [p]f is isomorphic to On, we can take an element t1 in H1(X [p]⊗Q,F )(1)/I [p]f
which generates a subgroup C isomorphic to On. Hence we can choose t1, t2 ∈ H1(X [p]⊗Q,F )(1)/I [p]f such

that H1(X [p] ⊗Q,F )(1)/I [p]f ∼= On · t1
⊕
Or · t2 with r ≤ n. Since the residual Galois representation ρf is

absolutely irreducible, one has

ρf (F[GQ]) = EndF(Tf,1) = EndO(H1(X [p] ⊗Q,F )(1)/m
[p]
f ).

Therefore there exist h ∈ ρf (F[GQ]) such that ht2 = at1 + bt2 with a ∈ O×, b ∈ O. This implies r = n and

H1(X [p] ⊗Q,F )(1)/I [p]f is isomorphic to O2
n. Hence, H1(X [p] ⊗Q,F )(1)/I [p]f is isomorphic to Tf,n. □

Let OK,m = Z + mOK be the order of the imaginary quadratic field K of conductor m. Let Km be the
ring class field of K of conductor m. Write Φp,m for

⊕
p|p Φp, where the sum is taken over the primes p of

Km and Φp denotes the component group associated to the Shimura curve X [p] and the lisse sheaf F at p.
Since the prime p is inert in K, it splits completely in Km/K. Hence, the choice of a prime of Km above p
identifies Φp,m with Φp[Gm]. Therefore, we have an isomorphism

Φp,m/I [p]f ∼= On[Gm].

For X = X [p] or X
[p]
d , let Xη be the generic fiber of XZp ⊗ Zur

p and Xs the special fiber. For a Qur
p -valued

point x on X, denote

H2
x(Xη,F )(1)0 := Ker[H2

x(Xη,F )(1)→ H2(Xη,F )(1)→ H2(XηF )(1)].

Then we have a canonical map H2
x(Xη,F )(1)0 → H2(Xη,F )(1)0 := Ker[H2(Xη,F )(1) → H2(XηF )(1)].

Let IQp be the inertia group and ItQp
the tame inertia. By the Hochschild-Serre spectral sequence

Ei,j2 = H i(IQp ,H
j(Xη,F )(1))⇒ H i+j(Xη,F )(1)

we obtain a map H2(Xη,F )(1)0 → H1(IQp ,H
1(Xη,F )(1)). Assume that d ≥ 4. Since X

[p]
d,Zp

is semistable,

RΨF is tame (Illusie [17, Theorem 1.2]). Therefore this map induces

α : H2(X
[p]
d,η,F )(1)0 → H1(ItQp

,H1(X
[p]
d,s, RΨF )(1)) ∼= H1(ItQp

,H1(X
[p]
d,η,F )(1)).

On the other hand, we have a map H2
x(X

[p]
d,η,F )(1)0 → H1(ItQp

,H1(X
[p]
d,η,F )(1)) by the composition of maps

H2
x(X

[p]
d,η,F )(1)0−→H2

x(X
[p]
d,η,F )(1)0

dp−→ Φd,p
β−→ H1(ItQp

,H1(X
[p]
d,η,F )(1)),

where the map β is induced by the monodromy pairing

H0(ItQp
,Xd,p)(∼= Xd,p)

λ→ H1(ItQp
,H1(X

[p]
d,s, i

∗F )(1))(∼= X̂d,p)→ H1(ItQp
,H1(X

[p]
d,η,F )(1)).

Theorem 5.6. (1) Let x be a Qur
p -valued point on X [p] such that x mod p is a non-singular point. Then,

there is a commutative diagram

H2
x(X

[p]
η ,F )(1)0 −−−−→ H2(X

[p]
η ,F )(1)0y yα

Φp
β−−−−→ H1(ItQp

,H1(X
[p]
η ,F )(1)).

(2) The map β induces an isomorphism

Φp/I [p]f ≃ H
1
sing(Qp2 , Tf,n).

Proof. For the first part, it is enough to show the commutativity of the following diagram:

H2(X
[p]
s , i∗F )(1)0

sp(1)−−−−→ H2(X
[p]
η ,F )(1)0yωp

yα
Φp

β−−−−→ H1(ItQp
,H1(X

[p]
η ,F )(1)).
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Fix a topological generator σ of the tame inertia ItQp
. First we work with the Shimura curve X

[p]
d instead of

X [p]. By [31, Lemma 1.6], we have a distinguished triangle

→ i∗Rj∗Λ→ RΨΛ
σ−1−→ RΨΛ

+1→,
where Λ = Zℓ. Since the action of σ on i∗F is trivial and F is extended to the model of X smoothly, we
have an isomorphism i∗F ⊗RΨΛ ∼= RΨF . Therefore one has a distinguished triangle

→ i∗Rj∗F → RΨF
σ−1−→ RΨF

+1→ .

Let γ be the composition of morphisms

RΦF →
⊕
x∈Σ

(RΦF )x

⊕
x Var(σ)x−→

⊕
x∈Σ

ix∗i
!
xRΨF

adj−→ RΨF .

Then we have the following commutative diagram:

−−−−→ i∗F −−−−→ RΨF −−−−→ RΦF
+1−−−−→y ∥∥∥ yγ

−−−−→ i∗Rj∗F −−−−→ RΨF
σ−1−−−−→ RΨF

+1−−−−→ .

Taking cohomology H i(X
[p]
d,s,−), one has the following commutative diagram:

H1(X
[p]
d,s, RΨF ) −−−−→ H1(X

[p]
d,s, RΦF ) −−−−→ H2(X

[p]
d,s, i

∗F ) −−−−→ H2(X
[p]
d,s, RΨF )∥∥∥ yγ′ y∼=
∥∥∥

H1(X
[p]
d,s, RΨF ) −−−−→ H1(X

[p]
d,s, RΨF ) −−−−→ H2(X

[p]
d,s, i

∗Rj∗F ) −−−−→ H2(X
[p]
d,s, RΨF )∥∥∥ ∥∥∥ ∥∥∥ ∥∥∥

H1(X
[p]
d,η,F )

σ−1−−−−→ H1(X
[p]
d,η,F )

δ−−−−→ H2(X
[p]
d,η,F ) −−−−→ H2(X

[p]
d,η,F ),

where γ′ is the composition of morphisms

H1(X
[p]
d,s, RΦF ) =

⊕
x∈Σ

(RΦF )x
Var(σ)−→

⊕
x∈Σ

H1
x(X

[p]
d,s, RΨF )→ H1(X

[p]
d,s, RΨF ).

Then one can see that δ : H1(X
[p]
d,η,F ) → H2(X

[p]
d,η,F ) factors through the coinvariant H1(X

[p]
d,η,F )σ−1

∼=
H1(ItQp

,H1(X
[p]
d,η,F )) and the map H1(ItQp

, H1(X
[p]
d,η,F ))→ H2(X

[p]
d,η,F ) coincides with the inverse of the

map obtained by Hochschild-Serre spectral sequence. Applying the projector ϵd defined by

ϵd :=
1

#Gd

∑
g∈Gd

g ∈ Q[Gd],

the first part of the theorem follows. Since Tf,n is unramified at p and λ does not divide p, one has

H1(IQp ,H
1(X

[p]
η ,F )(1)/I [p]f ) ∼= H1(ItQp

,H1(X
[p]
η ,F )(1)/I [p]f ). Therefore the second part follows from the

discussions in the proof of Proposition 5.4. □

6. Kuga-Sato varieties and CM-cycles

6.1. The ℓ-adic Abel-Jacobi map. Here, we recall some basic facts on ℓ-adic Abel-Jacobi map following
Jannsen ([18], [19]).

Let Y be a proper smooth variety over a field F of characteristic zero. For an integer i ≥ 0, write
CH i(Y/F ) for the Chow group of algebraic cycles defined over F of codimension i on Y modulo rational
equivalence. Fix a rational prime ℓ. Then one may define the cycle class map

clℓ : CH i(Y/F )→ H2i(YF ,Zℓ(i))
GF

and we denote by CH i(Y )0 its kernel. Note that this definition does not depend on the choice of the prime
ℓ by Lefschetz principle and comparison theorem between étale cohomology and singular cohomology.
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The cycle class map clℓ factors through H2i(Y,Zℓ(i)), then the Hochschild-Serre spectral sequence

H i(F,Hj(YF ,Zℓ(k)))⇒ H i+j(Y,Zℓ(k))

induces the ℓ-adic Abel-Jacobi map

AJℓ : CH i(Y/F )0 → H1(F,H2i−1(YF ,Zℓ(k))).

By Jannsen [18] we have the following geometric description of the ℓ-adic Abel-Jacobi map. Let Z be a
homologically trivial cycle on X defined over F of codimension i representing an element in CH i(Y/F )0.
The pull-back of the extension of GF -modules

0→ H2i−1(YF ,Zℓ(i))→ H2i−1(YF \ |ZF |,Zℓ(i))

→ Ker
[
H2i

|ZF |(YF ,Zℓ(i))→ H2i(YF ,Zℓ(i))
]
→ 0

by the map Zℓ → H2i
|ZF |(YF ,Zℓ(i)) sending 1 to b(Z), where b(Z) is the cohomology class of ZF .

6.2. Kuga-Sato varieties over Shimura curves. To construct global cohomology classes inH1(Km, Tf,n),
we will use the image of algebraic cycles on Kuga-Sato varieties under the ℓ-adic Abel-Jacobi map. We keep
the assumptions and notations as in §4. Now we suppose that d is a prime greater than 3 which splits in

K and is prime to Nℓp. Let π : A
[p]
d → X

[p]
d be the universal abelian surface over the Shimura curve X

[p]
d .

Then we define the Kuga-Sato variety

πk : W
[p]
k,d → X

[p]
d

by the k−2
2 -fold fiber product over X

[p]
d of A

[p]
d with itself.

Since the action of OB′ on A
[p]
d induces an action of B′× on Riπ∗Qℓ, one may define

L2 :=
∩
b∈B′

Ker
[
b− 1 : R2π∗Qℓ → R2π∗Qℓ

]
following Iovita-Spiess [16]. For an integer m ≥ 2, let

∆m : Symm L2 → Symm−2 L2(−2)

be the Laplace operator symbolically given by

∆m(x1 · · ·xm) =
∑

1≤i<j≤m
(xi, xj)x1 · · · x̂i · · · x̂j · · ·xm,

where ( , ) is the non-degenerate pairing

( , ) : L2 × L2 ↪→ R2π∗Qℓ ⊗R2π∗Qℓ
∪→ R4π∗Qℓ

Tr→ Qℓ(−2).

Let Lk−2 denote the kernel of ∆ k−2
2

.

Then there exists a projector ϵk defined as in Scholl [32] (also see Iovita-Spiess[16, §10]) such that

ϵd · ϵkHk−1(W
[p]
k,d ⊗Q,Qℓ)⊗Qℓ

E ∼= ϵdH
1(X

[p]
d ⊗Q,Lk−2)⊗Qℓ

E ∼= H1(X [p] ⊗Q,F )(1)⊗O E,

where ϵd is the projector defined by

ϵd =
1

#Gd

∑
g∈Gd

g ∈ Q[Gd].

Note that

ϵkH
k−1(W

[p]
k,d ⊗Q,Qℓ) ≃ ϵkH∗(W

[p]
k,d ⊗Q,Qℓ).
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6.3. Description on CM points. By the moduli interpretation of the Shimura curve X [p], a point on X [p]

is represented by a triple (A, ι, C). For m ≥ 0, there exists a point Pm = (Am, ιm, Cm) such that End(Pm) is
isomorphic to OK,m, where End(Pm) is the ring of endomorphisms of Am which commutes with the action
of ιm and respect the level structure Cm and OK,m is the order of K of conductor m. The point Pm is called
a CM point of level m. By the theory of complex multiplication, such point Pm is defined over Km, where
Km is the ring class field of K of conductor m.

Using the complex uniformization of the Shimura curve X [p], the CM points of level m are defined by

Pm(a) :=
[
(z′, φB,B′(a(p)ςτN

+
))
]
C
∈ X [p](C)

for each a ∈ K̂×. By Shimura’s reciprocity law, one has

Pm(a) ∈ CMp−ur
K (X [p]) ∩X [p](Km)

and Pm(a)σ = Pm(ab) for σ = recK(b) ∈ Gm. Set Pm = Pm(1).

6.4. Definition of CM cycles. Here we construct CM cycles following Nekovář [24] and Iovita-Spiess [16].
Let X = XN+,N− be the Shimura curve defined in §4 and let Pm = (Am, ιm, Cm) be a CM point of level m.
Then Am is defined over the ring class field Km. Write NS(Am) for the Néron-Severi group of Am. There is

a natural right B′×-action on NS(Am)Q given by L · b = Nrd(b)−1ιm(b)∗(L) for b ∈ B′× and L ∈ NS(Am)Q.
Note that our normalization is different from the action used in [16].

Since End(Pm) ≃ OK,m and Am has endomorphism by the maximal order OB′ , Am has endomorphisms
by an order OB′ ⊗ OK,m in B′ ⊗K ≃ M2(K). Hence Am is isogenous to a product Em × Em, where Em
is an elliptic curve with complex multiplication by OK,m. Write Γm for the graph of m

√
DK . Then, define

Zm to be the image of the divisor [Γm] − [Em × 0] −m2|DK |[0 × Em] in NS(Am). It lies in the free rank

one Z-module ⟨[Em × 0], [0× Em],∆Em⟩
⊥ ⊂ NS(Am), where ∆Em is the diagonal.

Proposition 6.1. Assume that A has complex multiplication by OK,m. Then there exists an element ym in
NS(A)⊗Q such that

(1) ιm(b)∗(ym) = ym for any b ∈ B′×,
(2) The self-intersection number of ym is 2DK .

Moreover, ym is uniquely determined up to sign by these properties.

Proof. This is a direct generalization of [16, Proposition 8.2]. In particular, ym = m−1Zm satisfies the
properties. □

Remark 6.2. Since we use a different normalization for the action of B′× on NS(Am)Q with [16], the
formula (1) in Proposition 6.1 is different from the corresponding formula in [16, Proposition 8.2].

Let t denote the number of prime divisors of Np, hm the class number of Km. Then there are exactly
2thm CM points of conductor m (see Bertolini-Darmon [2] for details).

Let W be the Atkin-Lehner group of order 2t generated by all the Atkin-Lehner involutions W+
q with

q | N+ and W−
q with q | N−p. Write Gm for the Galois group Gal(Km/K). One can identify the Galois

group Gm with Pic(OK,m) via geometrically normalized reciprocity map. The group Pic(OK,m) ×W acts
simply transitively on the set of CM points.

Recall that d ≥ 4 is an integer relatively prime to Np and

π : A = A
[p]
d → X

[p]
d

is the universal abelian surface and

ψ : X
[p]
d → X [p]

the natural morphism. Let Pm = Pm(1) be the CM point of level m defined as above and let P̃m be any point

on X
[p]
d such that ψ(P̃m) = Pm. The fiber A

P̃m
= π−1(P̃m) is an abelian surface with EndOB′ (AP̃m

) ≃ OK,m.

By Proposition 6.1, there exist an element ym ∈ NS(A
P̃m

)Q satisfying

(1) ιm(b)∗(ym) = ym for any b ∈ B′×,
(2) The self-intersection number of ym is 2DK .
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which is uniquely determined up to sign.
Let Y

P̃m
be an element of ϵ4CH

1(A
P̃m

)Q representing y
P̃m

. One may choose the elements Y
P̃m

satisfying
that

g∗(YP̃m
) = Y

g∗(P̃m)
for all P̃m ∈ ψ−1(Pm) and g ∈ Gd,

where g : A
P̃m
→ A

P̃m
is the automorphism induced by g ∈ Gd.

Let jk,m : A
k−2
2

P̃m
↪→ A

k−2
2 = W

[p]
k,d be the inclusion of the fiber over P̃m into the Kuga-Sato variety. We

define the element Z
P̃m

of ϵd · ϵ4CH2(A /Km)Q by the image of Y
P̃m

under the composition of maps

ϵ4CH
1(A

P̃m
)Q

j4,m−→ ϵ4CH
2(A /Km)Q

ϵd−→ ϵd · ϵ4CH2(A /Km)Q.

We require that the elements Y
P̃m

satisfy the compatibility with the action of W × Pic(OK,m) (see Iovita-

Spiess [16, page 366] for details). Then we define the CM cycle Z
k−2
2

m of level m by setting

Z
k−2
2

m := ϵd · ϵk(jk,m)∗(Y
k−2
2

P̃m
) ∈ ϵd · ϵkCHk/2(W

[p]
k,d/Km)Q ⊂ CHk/2(W

[p]
k,d/Km)Q.

7. Construction of Euler systems and the explicit reciprocity law

7.1. Construction of special cohomology classes. Let p be an n-admissible prime. Here we give a
description of the image of CM cycles under the ℓ-adic Abel-Jacobi map following Nekovář [25]. Write Zm

for the CM cycle of level m. Let κ
[p]
d (m) be the image of CM cycle Z

k−2
2

m under the ℓ-adic Abel-Jacobi map

ϵk ◦AJℓ,E : CHk/2(W
[p]
k,d/Km)E → H1(Km,H

1(X
[p]
d ⊗Km,F )(1))E .

By the construction of the cohomology class, we have the following lemma.

Lemma 7.1. The global cohomology class κ[p](m) := ϵdκ
[p]
d (m) belongs to H1(Km,H

1(X [p] ⊗Km,F )(1)).

Let P̃m be a lift of the CM point Pm of level m. Let

clℓ : CH
k−2
2 (A

k−2
2

P̃m
)→ ϵkH

k−2(A
k−2
2

P̃m
⊗Km,Zℓ(

k − 2

2
))GKm

be the cycle class map. Then ϵd·ϵkHk−2(A
k−2
2

P̃m
⊗Km,Zℓ(k−2

2 ))
GKm
O is isomorphic toH2

Pm
(X [p]⊗Km,F )(1)GKm .

By the similar argument of [25, Proof of (2.4) Proposition (2)], one can show that the image of Y = Y
k−2
2

P̃m

is represented by the pull-back of extension

0→ H1(X
[p]
d ⊗Km,F )(1)→ H1(X

[p]
d ⊗Km \ P̃m ⊗Km,F )(1)

→ H2
P̃m⊗Km

(X
[p]
d ⊗Km,F )(1)GKm → 0

by the map O → H2
P̃m⊗Km

(X
[p]
d ⊗Km,F )(1)GKm sending 1 to ϵkb(Y ), where b(Y ) is the cohomology class

of YKm
. We will compute the image

ϵd · ϵkb(Y ) ∈ H2
Pm⊗Km

(X [p] ⊗Km,F )(1).

Recall that there is an elliptic curve Em with complex multiplication by OK,m defined over Km such that
A
P̃m

is isogenous to Em × Em. Then, Künneth formula and antisymmetrization gives a projection

prk : Hk−2(A
k−2
2

P̃m
⊗Km,Zℓ(k/2− 1))→ H1(Em ⊗Km,Zℓ)⊗k−2(k/2− 1)

→ (Symk−2H1(Em ⊗Km,Zℓ))(k/2− 1).
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One obtains that the element ϵkclℓ(Y ) belongs to the space (Symk−2H1(Em ⊗ Km,Qℓ))(k/2 − 1). There

exists a B×
ℓ ≃ B

′×
ℓ ≃ GL2(Qℓ)-equivariant isomorphism

(Symk−2H1(Em ⊗Km,Qℓ))(k/2− 1)
≃−→ (Symk−2H1(Em ⊗Km,p,Qℓ))(k/2− 1)
≃−→ (Symk−2H1(Em ⊗ Fp2 ,Qℓ))(k/2− 1)
≃−→ Lk(Qℓ)

which preserves the intersection pairing. Therefore, we have an identification

H2
P̃m⊗Qp2

(X
[p]
d ⊗Qp2 ,F )(1) ∼= H2

P̃m⊗Fp2

(X
[p]
d ⊗ Fp2 ,F )(1) ∼= Lk(O),

where P̃m = P̃m mod p.

Lemma 7.2. The image of ϵd · ϵkclℓ(Y ) in Lk(Qℓ) is given by v∗
0 up to sign.

Proof. This follows from the fact that both elements satisfy the same properties:

(1) ϵd · ϵkclℓ(Y ) and v∗
0 are eigenvectors for the action of K with eigenvalue 1.

(2) ⟨ϵd · ϵkclℓ(Y ), ϵd · ϵkclℓ(Y )⟩ = ⟨v∗
0,v

∗
0⟩ = Dk−2

K .

These properties characterize an element in Lk(Qℓ) up to sign. □

By Theorem 5.3, we have an isomorphism H1(X [p] ⊗ Km,F (1))/I [p]f ≃ Tf,n as Gal(Km/Km)-modules,

therefore
∑

σ∈Gm
ϵdκ

[p](m)σ defines a cohomology class κ
[p]
f,n(m) in H1(Km, Tf,n).

7.2. The explicit reciprocity law. By Theorem 5.6 and the description of the ℓ-adic Abel-Jacobi map
considered in the previous section, we have a commutative diagram

CHk/2(W
[p]
k,d/Km)

ϵd·ϵkAJℓ−−−−−→ H1(Km,H
1(X [p] ⊗Km,F )(1))

ϵd·ϵkclℓ
y yres⊕

p|pH
2(X [p] ⊗Km,p,F )(1)

ωp−−−−→ H1
sing(Km,p, Tf,n).

Proposition 7.3. There exists a positive integer M such that

redλn(κ
[p]
f,n+M (m)) ∈ H1

p (Km, Tf,n),

where p is a n+M -admissible prime.

Proof. For v|dN+, by Lemma 2.3 and [4, Corollary 5.2] we have

redλn(resvκ
[p]
f,n+M (m)) ∈ H1

f (Km,v, Tf,n)

for sufficiently large M . For v|N−, since H0(Km,v, Af ) is finite, H2(Km,v, Tf ) = Hom(H0(Km,v, Af ), E/O)

is also finite. Hence for sufficiently large M , λMH2(Km,v, Tf ) = 0. The commutative diagram

0 −−−−→ Tf
×λn+M

−−−−−→ Tf
red

λn+M−−−−−−→ Tf,n −−−−→ 0

×λM
y y=

yredλn

0 −−−−→ Tf
×λn−−−−→ Tf

redλn−−−−→ Tf,n −−−−→ 0

gives rise to

H1(Km,v, Tf )
red

λn+M−−−−−−→ H1(Km,v, Tf,n) −−−−→ H2(Km,v, Tf )[λn+M ]

=

y yredλn

y×λM

H1(Km,v, Tf )
redλn−−−−→ H1(Km,v, Tf,n) −−−−→ H2(Km,v, Tf )[λn].
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Therefore by the definition of H1
f (Km,v, Tf,n) and the fact H1

f (Km,v, Vf ) = H1(Km,v, Vf ) (see Besser [4,

Proposition 4.1 (2)]), we have

redλn(resv(κ
[p]
f,n+M (m))) ∈ H1

f (Km,v, Tf,n).

For v ∤ Ndℓp, the CM cycle Z
k−2
2 is unramified at v, hence the class redλn(κ

[p]
f,n+M (m)) is also unramified at

v. For the case v|ℓ, the Galois representation H1(X
[p]

Km
,F (1)) is crystalline, since the Kuga-Sato variety W

[p]
k,d

has good reduction at v. Hence by Nekovář [26, Theorem 3.1(1)] and Nizio l [29, Theorem 3.2], the image of
the ℓ-adic Abel-Jacobi map is contained in H1

f (also see Nekovář [26, Theorem 3.1(2)] and Nekovář-Nizio l

[28, Theorem B] for general case). Therefore one has

redλn(resv(κ
[p]
f,n+M (m))) ∈ H1

f (Km,v, H
1(X [p] ⊗Km,v,F )(1)/I [p]f ).

Since the prime ℓ is greater than k − 1, one can use the Fontaine-Laffaille theory. Choose a Galois stable

lattice T in a crystalline representation of GKm,v such that T/λnT ∼= H1(X [p] ⊗Km,v,F )(1)/I [p]f . Denote

T1 = T and T2 = Tf . Let Di be a strongly divisible O-lattice in Dcris(Vi) = DdR(Vi) (the equality follows
from the facts that Km,v = Qp2 is an unramified extension of Qp and Vi are crystalline) for i = 1, 2, where

Vi = Ti⊗O E. Define D
k/2
i = Di ∩Dk/2

dR (Vi) and ϕk/2 = λ−k/2ϕ, where ϕ is the Frobenius morphism. By the

Fontaine-Laffaille theory, we have isomorphisms D1/λ
nD1

∼= D2/λ
nD2 and D

k/2
1 /λnD

k/2
1
∼= D

k/2
2 /λnD

k/2
2 .

Moreover by Bloch-Kato [5, Lemma 4.5 (c)], h1(Di) = Coker[D
k/2
i

1−ϕk/2→ Di] is isomorphic to H1
f (Km,v, Ti).

From these facts, it is easy to see

H1
f (Km,v,H

1(X [p] ⊗Km,v,F )(1)/I [p]f ) ∼= H1
f (Km,v, Tf,n)

for v|ℓ. Therefore we have redλn(resv(κ
[p]
f,n+M (m))) ∈ H1

f (Km,v, Tf,n) for v|ℓ. This completes the proof. □

The relation between the image of the CM cycle in H1
sing(Km,p, Tf,n) and the theta element Θ(fπ′) is given

by the following theorem.

Theorem 7.4. There exists a constant u ∈ O×
n such that ∂p(redλn(κ

[p]
n+M (m))) ≡ u ·Θ(fπ′) mod λn.

Proof. By Theorem 5.3, Theorem 5.6 and Lemma 7.2, one has

∂p(κ
[p]
f,n+M (m)) =

∑
[a]∈Gm

⟨v∗0, f̂(xm(a)τN
+

)⟩k · [a]m = Θ(fπ′) ∈ On+M [Gm]

up to O×
n+M . Therefore the natural image in On[Gm] satisfies the same property. □

Now, our main result (Theorem 1.1) follows from Theorem 2.8 and Theorem 7.4

Remark 7.5. Assume that ρf is ramified at all primes dividing N−. Then we have

Ωπ,N− = u · Ωcan
f for some u ∈ O×.

This fact follows from Proposition 5.1 and the argument in [8, Proof of Proposition 6.1].
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