SELMER GROUPS AND CENTRAL VALUES OF L-FUNCTIONS FOR MODULAR
FORMS

MASATAKA CHIDA

ABSTRACT. In this article, we construct an Euler system using CM cycles on Kuga-Sato varieties over Shimura
curves and show a relation with the central values of Rankin-Selberg L-functions for elliptic modular forms
and ring class characters of an imaginary quadratic field. As an application, we prove that the non-vanishing
of the central values of Rankin-Selberg L-functions implies the finiteness of Selmer groups associated to the
corresponding Galois representation of modular forms under some assumptions.

INTRODUCTION

Let ¢ be a prime and fix an embedding ¢, : Q — Cy, where C; = Q. Let N be a positive integer and k an
even positive integer. Let

f — Z an(f)e27rinz c Sk(FO(N))nCW
n=1

be a normalized cuspidal eigenform. Denote E = Q({a,(f)}n) for the Hecke field of f over Q, and fix a
uniformizer A of the ring of integers O of E. Denote the residue field of E by F. Let

ps : Gal(@/Q) — GLa(E)

be the Galois representation associated to f. We put p} =prQK (%) and denote V; for the representation

space of p}. Fix a Gal(Q/Q)-stable O-lattice Ty and set Ay = V/Ty. Let L be an abelian extension of Q
and x a character of the Galois group Gal(L/Q). By the Bloch-Kato conjecture [5], it is expected that the
central value of the L-function of f twisted by the character x is related to the order of the y-part of the
Selmer group Sel(L, Af). Kato [21] proved that the non-vanishing of the central value L(f, x,k/2) implies
the finiteness of the y-part of the Selmer group Sel(L, Ay). Moreover, Kato showed a result on the upper
bound of the size of Selmer group in terms of the special values of L-functions using the Euler system of
Beilinson-Kato elements in K5 of modular curves. For an elliptic curve E over Q and an imaginary quadratic
filed K, similar results in the anticyclotomic setting are considered by Bertolini-Darmon [3] and Longo-Vigni
[23] using the Euler system constructed from CM points on Shimura curves. These results were generalized
to modular abelian varieties over totally real fields by Longo [22] and Nekovar [27]. In this paper, we will
consider the generalization of these results for the central values of L-function associated to higher weight
modular forms twisted by ring class characters over an imaginary quadratic field K,

We fix an imaginary quadratic field K of discriminant Dy < 0 satisfying (N, Dg) = 1 and denote the
integer ring of K by Ok. Then K determines a factorization N = NTN~, where N T is divisible only by
primes which splits in K and N~ is divisible only by primes which are inert in K. Assume that

(ST) N~ is a square-free product of an odd number of inert primes.

Fix an integer m such that (NDg,m) = 1 and let K,, be the ring class field of conductor m. Let x be
a character of the Galois group G,, = Gal(K,,/K). Then we can define the Rankin-Selberg L-function
L(f/K,Xx,s) associated to f and x. We define a complex number Qy - by
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where || f||ry () is the Petersson norm of f and ny(N) is the congruence number of f among cusp forms in

Sp(To(N))N™ % (see §1 for details). Then Bloch-Kato conjecture predicts a relation between the values

LUK XR2) and the size of the x-part of Selmer group Sel(K,,, Ay¢),

fNT
We consider the following condition.
Hypothesis (CR") . (1) £>k+1 and #(F))F1 > 5,

(2) The restriction of the residual Galois representation pr of ps to the absolute Galois group of
Q(y/ (—1)%6) is absolutely irreducible,

(3) py is ramified at g if either (i) ¢ | N~ and ¢* =1 (mod ¢) or (ii) ¢||[NT and ¢ =1 (mod ¢),
(4) py restricted to the inertia group of Q, is irreducible if ¢? | N and ¢ = —1 (mod ).

Our main result is the following theorem.

Theorem 0.1. Let x be a ring class character of conductor m. Suppose that f is a cuspidal Hecke eigen
newform. Assume the following conditions:

(1) ¢ does not divide NDg[K,, : K].

(2) the residual Galois representation py satisfies the condition (CRY).
If c = ordA(W) is finite, then we have A2 - Sel(Kyp, Ap)X = 0. In particular, if L(f/K,x,k/2) is
not zero, then for all but finitely many primes X\ the x-part of the Selmer group Sel(K,, Ay) is trivial.
Remark 0.2. (1) The assumption (ST) implies that f is not a CM form. Hence the residual Galois

representation p; = p;  satisfies the condition (CR™) for all but finitely many \.
(2) Let Q" be Hida’s canonical period defined by

ARk (] £ lrg vy
nr(N) ’

where 7¢(IV) is the congruence number of f among cusp forms in S;(I'¢(2V)). Under the hypothesis
(CR™), one can show that

Q?&n —

Qpn- =u-QF" for some u € O,
if we further assume that p; is ramified at all primes dividing N ™.

A similar result is given as a corollary of anticyclotomic Iwasawa main conjecture concerned in [9] under
the ordinary condition. In this paper, we remove the ordinary condition.

To prove our main theorem, we develop the method of Bertolini-Darmon [3] on the Euler system obtained
from CM points on Shimura curves. In [9], we used an Euler system obtained from CM points on Shimura
curves and congruences between modular forms of higher weight and modular forms of weight two in the
ordinary case. However, in the non-ordinary case it seems difficult to use such congruences. Therefore
we choose to use CM cycles on Kuga-Sato varieties over Shimura curves instead of CM points. For the
construction of Euler system, we also use a level raising result (Theorem 5.3) for higher weight modular
forms and the assumption (CR™) is necessary to show the level raising result. More precisely, under the
assumption (CR™) we have a freeness result (Proposition 5.1) of the space of definite quaternionic modular
forms as Hecke modules and it is used in an important step in the proof of the level raising result. The
freeness result is a generalization of [8, Proposition 6.8] to the “low weight crystalline case” which is closely
related to “R = T” theorems and our case was considered by Taylor [33]. Then one can construct an Euler
system using CM cycles and a level raising argument.

Moreover we show a relation between the Euler system and central values of Rankin-Selberg L-functions
(Theorem 7.4), so-called the first explicit reciprocity law by Bertolini-Darmon. In the case of weight 2, the
explicit reciprocity law is proved by Kummer theory and the theory of ¢-adic uniformization of Shimura
curves. To show the explicit reciprocity law in higher weight case, it is necessary to compute the image of
CM cycles under the f-adic Abel-Jacobi map which is defined by Hochschild-Serre spectral sequence. Since
it is difficult to compute the image of CM cycles directly, we give a different description of the image of CM
cycles using the theory of vanishing cycles and the theory of ¢-adic uniformization of Shimura curves. This
is a main ingredient of our proof.
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This article is organized as follows. First, we review the theory of modular forms on quaternion algebras
and special value formula of Waldspurger in §1. Moreover, we recall basic facts on Galois cohomology and
Selmer groups in §2. In §3, we review the theory of vanishing cycles which is used in §4 and §5. In §4, we
prepare some fundamental results on the cohomology of Shimura curves. In §5, we show a level raising result
for higher weight modular forms and prove a key result to compute the image of CM cycles under the ¢-adic
Abel-Jacobi map. In §6 and §7, we construct a special cohomology classes using CM cycles on Kuga-Sato
varieties and give a proof of the main theorem.
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1. THETA ELEMENTS AND THE SPECIAL VALUE FORMULA

In this section, we recall the construction of the theta element and the relation with central values of
anticyclotomic L-functions for modular forms following [8, §2, 3 and 4].

Fix an embedding o : Q@ < C and an isomorphism ¢ : C = C, for each rational prime p, where C, is
the p-adic completion of an algebraic closure of Q,. Let Z = yLIlZ /mZ be the finite completion of Z. For
Z-algebra A, we denote A ®g, i/ by A.

Let K be an imaginary quadratic field with the discriminant —Dg < 0 and let § = v/—Dg. Denote z +— 2
for the complex conjugate on K. Define 8 by

0

:D/—{—5 D - Dy if2J(DK,
2 Di/2 if 2| Dg.

Fix positive integers N that are only divisible by prime split in K and N~ that are only divisible by primes
inert in K. We assume that N~ is the square-free product of an odd number of primes. Let B be the definite
quaternion over Q which is ramified at the prime factors of N~ and the archimedean place. We can regard
K as a subalgebra of B. Write T and N for the reduced trace and norm of B respectively. Let G = B* be
the algebraic group over Q and let Z = Q* be the center of G. Let £{ N~ be a rational prime. Let m be a
positive integer such that (m, NtN~¢) = 1. We choose a basis of B= K @& K - J over K such that

e J2=p3cQ* withB<0and Jt=1J forallt € K.
e Be(Zy)* forall ¢| NT and § € Z) for q|Dg.

Fix a square root /8 € Q of 8. We fix an isomorphism i(N ") = quN* iq BWN7) =~ MQ(A;Nﬁ)) as follows.
For each finite place ¢|m¢NT, the isomorphism i, : B, & M>(Q,) is defined by
. T(6) —N(6 . -1 T(6
wo)= (" ) =i (3 Y waezp.
For each finite place ¢ NTN~¢m, choose the isomorphism i, : By := B ®g Qq = M2(Q,) such that
iq(Ok ® Zq) C M (Zy).

From now on, we shall identify B, and G(Q,) with M>(Q,) and GL2(Qy) via i, for finite ¢ { N~. Finally,
we define

ik :B— My(K), a+bJ —ig(a+bJ):= (Z lf) (a,b € K)

and let ic : B — M2(C) be the composition ic = too 0 ix.
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Fix a decomposition NtTOx = NN+ once and for all. For each finite place ¢, we define Sq € G(Qy) as

follows: )

1 if gt Ntm,

0 0
o1t ( ) if ¢ = qq is split with g/,

11
= noQ
s qO 1) if g/m and ¢ is inert in K (n = ordy(m)),
1 —n
0 ql ) if g/m and ¢ splits in K (n = ordy(m)).

Define z : Aje — G(A) by
Tm(a) i =a-¢ (¢:= ng).
q

This collection {zm(a)},. A% of points is called Gross points of conductor m associated to K.

Let Ok ,m = Z + mOg be the order of K of conductor m. For each positive integer M prime to N,
we denote by Ry the Eichler order of level M with respect to the isomorphisms {i, : By ~ M2(Qq)}gn--
Then one can see that the inclusion map K < B is an optimal embedding of O,, into the Eichler order
BNcRy (<) (ie. (BNsRy(s) ™ H)NK = Ok m) if ordg(M) < ordg(m) for all primes g|m.

Let k > 2 be an even integer. For a ring A, we denote by Ly(A) = Sym*~2(A?) the set of homogeneous
polynomials in two variables of degree k — 2 with coefficients in A. We write

Ld)= @@ Av (v,=X7 YT
—kr<k
Also we let py : GLa(A) — AutgLi(A) be the unitary representation defined by
k=2
pr(9)P(X,Y) = det(g)” > - P((X,Y)g) (P(X,Y) € Ly(A4)).
If Ais a Zy-algebra with £ > k — 2, we define a perfect pairing (, ) : Lr(A) x Lx(A) — A by
. Y — 2y D(k/2 4+ 1)1 (k/2 =)
(Z a;v;, Zb]v]>k = Z arbg_o_p - (—1) 2 Th—1) .
i J —k/2<r<k/2
For P, P’ € Li(A), this pairing satisfies
(or(9) P, pr(9) PV = (P, P')y.
Via the embedding ic, we obtain a representation
Proo t G(R) = (B &g R)* ~S5 GLy(C) — AuteLy(C).

Then C - v, is the eigenspace on which py «(t) acts by (¢/t)" for t € (K ®g C)*. If A is a K-algebra and
U C G(Ay) is an open compact subgroup, we denote by SkB (U, A) be the space of modular forms of weight
k defined over A, consisting of functions f : G(Af) — Li(A) such that

flagu) = proo() f(g) for all @ € G(Q) and u € U.
Denote SP(A) := lim, , SB(U, A). Let A(G) be the space of automorphic forms on G(A). For v € L(C)
and f € SB(C), we define a function ¥(v ® f) : G(Q)\G(A) — C by
V(v @ f)(9) = (Pr.oo(go0)vs f(97))-
Then the map v® f > U(v® f) gives rise to G(A)-equivariant morphism L (C)® S (C) — A(G). Let w be a
unitary Hecke character of Q. We write S2(U,w,C) = {f € SP(U,C) | f(zg) = w(2)f(g) for all z € Z(A)}.
Let AP(U,w, C) be the space of automorphic forms on G(A) of weight k and central character w, consisting
of functions ¥(f ® v) : G(A) — C for f € SP(U,w,C) and v € Li(C). For each positive integer M, we put
SP(M,C) =Sf (R}, 1,C),

AB(M,C) =AP (R}, 1,0),
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where 1 is the trivial character.

Let 7 be an unitary cuspidal automorphic representation on GLg(A) with trivial central character and 7’
the unitary irreducible cuspidal automorphic representation on G(A) with trivial central character attached
to m via Jacquet-Langlands correspondence. Let 7f, denote the finite constituent of 7. Let R := Ry+ be an
Eichler order of level N™. The multiplicity one theorem together with our assumptions imply that 7f, can
be realized as a unique G(A f)-submodule SZ (7}, ) of SP(C) and SE(N*,C)[r} ] := SP(xf, )N SE(NT,C)
is one dimensional. We fix a nonzero new form f € SP(N*,C)[x, ]. Define the automorphic form
pom € AB(N*,C) by

k—2

or =V (V5 ® fr) (V5 =D;2 -vo).
Define the local Atkin-Lehner element TN € G(Qq) by TN = J for glooN—, Té\ﬁL = 1 for finite place ¢t N
and TN+ = ( 0 ) if g/ Nt. Let 7V .= I1, TN+ € G(A). Let CI(R) be a set of representatives of

Nt 0
BX\BX/RX(@X in BX = G(Ay). Define the inner product of fr by
(fars fu )R : Z (9), fr(g™ Ni (T == (B* N gR*g~'Q")/Q).
geCl(R

Let £+ N~ be a rational prime. We recall the description of ¢-adic modular forms on B*. Let A be a

Of,-algebra. For an open compact subgroup U C EX, we define the space of £-adic modular forms of weight
k and level U by

SE(U,A)={F: B — Ly(4) | Jlagu) = pr(u; ) [(9), @ € B, u e UQ}.

Also we write SP(NT, A) := S,f(]/%x ,A). Let A and [ be the primes of Q and K induced by ¢, respectively.
We let ik, : B < My(K|) be the composition if, := ¢ 0 ig. Define py ¢ : B — AutL(Cy) by
Pre(9) = prlir(9))-

By definition, py, is compatible with py o in the sense that py(9) = pr.o(g) for every g € B, and one
can check that

—/B6
preta) = puriei ). where = (V] 797) € Grary,
Here iy : By ~ M2(Qy) is the fixed isomorphism. If ¢ is invertible in A, there is an isomorphism:

SE(NT,A) = SE(N*',A), f = [(9) = ok Donmelor V) f9)-

Let Q(f) be the finite extension of Q generated by Fourier coefficients of the newform f = f; €
Snew(Io(N)). Let O C Cy be the completion of the ring of integers of Q(f) with respect to A = AN Q(f).
Fix a uniformizer A in O. The O-module SP(NT, O)[hy) = SB(NT,0)NSB(N*,Cy)[r},] has rank one.
We say fr € SP(N*,C)[rh,] is M-adically normalized if o is a generator of SE(NT,0)[r},] over O. This
is equivalent to the following condition:

f;(go) #0 (mod \) for some gg € G(Ay).

Now we define the theta elements. For a positive integer m, let G,, = K X\f( */ (5? ., be the Picard group
of the order Ok ,, = Z+mQOgk. We identify G,, with the Galois group of the ring class field K, of conductor
m over K via geometrically normalized reciprocity law.

Denote by []m : KX — G, a — [a],n the natural projection map. We consider the automorphic form
on =V (v§® frr). It is easy to see that the function

G KX = C, av Gula) = op(zm(a))

factors through G,,, so we can extend @, linearly to be a function ¢, : C[G,,] — C. Let P, := [1], € G
be the distinguished Gross point of conductor m. We put

@ﬂ’(J(Pm)) = Pr’ (.Z‘m(a)) if o = [a]m € Gm.
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We define the theta element ©(fr/) € C[G,,] by
Ofr) = Y Pwlo(Pu))- o

O'Egm

Then we have the following special value formula.

Proposition 1.1. Let x be a character of G,,. Then we have

2
MOf)?) = D(ky2)? . PUR B XGR) yb peor HORIT o5 ot oy,

Qﬂ',N*

where
AR fel e v

9] _ =
i <f7r’v f7r’>R

18 the A-normalized period for f.

Proof. This formula is a special case of Hung’s result [15, Proposition 5.3]. Also see [8, Proposition 4.3] for
the case that x is an unramified character. O

2. SELMER GROUPS FOR MODULAR FORMS

2.1. Definition of Selmer groups. First we recall the definition of Selmer groups following Bloch-Kato
[5]. Let f be a cuspidal Hecke eigenform of weight k& with respect to I'g(N). Let Q(f) denote the Hecke field
generated by eigenvalues {a,(f)} of Hecke operators {Tj,}. Let X be the prime of Q(f) above the prime ¢
induced by the fixed embedding ¢y. Denote E = Q(f),. Also we denote the integer ring of E by O and the
uniformizer by A and write O,, = O/\"O. Then there exist a 2-dimensional Galois representation

pr=pix: Gg = Gal(Q/Q) — GLo(E)
such that det(1 — ps(Froby) - X) = 1 — aq(f)X + ¢"'X? for any prime ¢ satisfying ¢ { /N. Let Vi be
2—k _
the representation space of py ® ¢, , where g : Gal(Q/Q) — Z; is the f-adic cyclotomic character.
We choose a Gg-stable O-lattice Ty in Vy, and denote Ay = V;/Ty. Then there is an exact sequence
0—>Tf—Z>VfE>Af—>O.
For a finite extension F'/Q,, Bloch-Kato [5] defined the finite part of Galois cohomology groups by

Ker [HY(F,Vy) — HY(F"", V)] 0 #p,

HYF,Vy) =
£ (EV5) {Ker [HY(F,Vy) — HY(F,V;®q,Beis)] €= p,

where B, is the p-adic period ring defined by Fontaine and F*" is the maximal unramified extension of F'.
Also we denote

H(F,Ty) =i '(Hj(F,Vy))
and
H}(F,A;) = Im [H}(F, Vy) = HYF,V;) 25 HY(F, Af)} .
For a number field F', we define the A-part of the Selmer group of f by

HYF,, A
HY(F, Ap) =[] ngF s)
) A

Sel(F, Ar) = Ker
! Ay)

We also define

HY(F,,Vy)
H}(F,Vy) =Ker |H'(F,Vy) = [ 7 !

f(FUan)

Moreover we set Ay, = Af[A"] = Ker[Af A fland Ty, = Ty /A"Tt. Then there exists a Galois equivariant
bilinear pairing T x Ty — O(1) such that the induced pairings on T, = Ay, are non-degenerate for all n.
For details, see Nekovar [24, Proposition 3.1].
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Proposition 2.1. The pairing above induces the local Tate pairing

(,),: H(F,,Ty) x H'(F,,A;) = H*(F,,E/O(1)) = E/O,

(2 )y H (B Tp) % H (B Agn) = HY(F,, 0,(1) = O,
for each place v of F'. The local Tate pairing is perfect and satisfies the following properties.

(1) The pairing ( , ), makes H} (Fy,T¢) and H}(FU, Ay) exact annihilators of each other at any place v.
(2) If x and y belong to H'(F, Ay,,), then

> (ay), =0,

v

where the sum is over all places v of F but is a finite sum.
Proof. See Besser [4, Proposition 2.2]. O

Definition 2.2. For each place v, we define H}(Fv, Ay ) to be the preimage of H} (Fy, Ap) in HY(F,, Ag.p).
Then we let

HY(F,, Af )
Sel(F, At,) =Ker |HY(F, A p) — ] [vifn
( fan) ( f,n) . H}(FU’AJL.JL)
Also we define H}(Fv’ T§,n) to be the image of H}(Fv, Ty) in H'(F,,T},,). Moreover we define the singular

part of local cohomology group H! sing (Fy,Tfy) to be the quotient

HY(F,,Ttn)

H .
H}(Fy, Tfn)

szng(F’U’ Tf7 )

If v does not divide N, then we have

HYo(Fy, Tyn) = HY(FY Ty ,,) 9.

sing

By Proposition 2.1, H}(Fv, Ayy) and HL (F,,T},) are the Pontryagin dual of each other.

sing
For each prime ¢ and Gg-module M, we denote

H}(Fy, M) = D H}(F,, M)
vlg
and

Hpy(Fy M) = @D HY,y(Fy, M),

sing
vlg

Lemma 2.3. Let g be a prime which splits in K. Then Hsmg(Km,q,Tf’n) = 0 for sufficiently large m.

Proof. This lemma follows from the same argument of Proof of [3, Lemma 2.4]. O

2.2. Euler system argument. Here we give a generalization of the Euler system argument introduced by
Bertolini-Darmon [3] to the case of higher weight modular forms.

Definition 2.4. A prime p is said to be n-admissible if

(1) p does not divide N¢ [K,, : K].

(2) pisinert in K.

(3) A does not divide p? — 1.

(4) A™ divides pg —i—p% —¢e-ap(f), where e = £1.

Lemma 2.5. Let p be an n-admissible prime. Then H}(Kmyp,Afm) and HY,, (Kpmp, Ttn) are both isomor-

sing

phic to On[Gn]. In particular, the x-part of these groups are both isomorphic to O,,.

Proof. This is a direct generalization of [3, Lemma 2.6]. O
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Define the map J, to be the composition of the maps
HY (K, Apn) = H (Kinp, Afn) = Hyng(Kinp, Afn)-
If 9,(k) = 0 for k € HY (K p, Afp) (vesp. HY (K p, Ttn))), let
vp(K) € H}(Kmvp,Aﬁn) (resp. H}(Km,pngm))
denote the natural image of x under the restriction map 9,.

Theorem 2.6 ([9], Theorem 6.3). Let s € HY(K,, Af,) be a non-zero element. Then there exist infinitely
many n-admissible primes p such that 0,(s) =0 and vy(s) # 0.

Definition 2.7. For a prime p, we define the compactified Selmer group H;(Km, Ttr) to be

HY (K, Trn)

HY K To ) = Ker | EY o To oy — TT 2 Bmws Tyn)

p e Tp) = e | HE(H Ty) = L
vip

Theorem 2.8. Lett be a positive integer. Suppose that for all but finitely many n-admissible primes p there
exist an element Ky, € H;(Km,Tf’,H_t)X such that X710, (k) # 0. Then A"Sel(Kp,, Afpit)X =0

Proof. Assume that there exist an element s in Sel(K,,, A ,1¢)X satisfying A\"s # 0. By Theorem 2.6 and
the assumption, we can take a n + t-admissible prime p satisfying the following properties simultaneously:

(1) vp(A"s) # 0 and 9,(A"s) =0
(2) there exist an element , € H) (K, Tfn4t)X such that X'=19,(kp) # 0.
By the properties of the local Tate pairing, we have
Z <)\t_16q(“p)avq()\n5)>q = 0.
q

Since H}(Kmq, Ay ,)X and H} (Km,q, T n)X are annihilators for each other, we have

L0, (1), v (A"5)),, = 0 for g £ p.
Therefore (A'710,(ky), resp(A"s)), = 0 by Proposition 3.1 (2). Since the local Tate pairing is perfect, the
assumption A\*719,(k,) # 0 implies v,(A"s) = 0. This gives a contradiction. O

3. REVIEW OF VANISHING CYCLES

In §4 and 5, we will use the theory of vanishing cycles in several important steps. Therefore, in this section
we briefly recall the theory of vanishing cycles following the exposition in Rajaei [30].

3.1. Vanishing cycles. Let R be a characteristic 0 henselian discrete valuation ring with residue field k
of characteristic p. Fix a uniformizer w in R. Denote the fraction field by K and the maximal unramified
extension of K by K. Let X — S = Spec R be a proper and generically smooth curve and .% a constructible
torsion sheaf on X whose torsion is prime to p. Let i : X; — X, j : Xg — X, i : Xz — Xopw and
j X% — Xogw be the canonical maps. By the proper base change theorem and the Leray spectral
sequence for j, we have

RF(XF,TKQQZ) = RF(XOKUMR;*E

— Xk

Then the adjunction morphism gives ¢ : i..% — i Rj,j .#. We define the vanishing cycles by
R®.7 := Cone(¢),

*

F) > RU(X4,i RjJ F).
_

and the nearby cycles by

RV.Z :=i'Rj,j 7.
Then we have a distinguished triangle
— i*F — RUZ — ROF 5,
For i > 0, we have R'®.% = R'U.%. Let X be the set of singular points of X% Assume that a neighbourhood

of each singular point z is (locally) isomorphic to the subscheme of A% = S[t1, 5] with the equation t1ts = a,
(denote e, := v(ay) > 0). When the special fiber X7 is reduced, Deligne [10] proved the sheaves R'®.%
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vanish for i # 1 and R'®.Z is supported at 3, and the specialization map Hl(XE, F) —» HY (X%, F) is
injective. Now we have the specialization sequence

0 — H'(Xg,i"7)(1) — H' (Xg, Z)(1) 5 D(R'@F),(1)
TEL

—s B(Xp, i 7)(1) Y B2 (X, 7)(1) — 0.

Then we define the character group for the sheaf .% on X by

X(F) = Ker [P R'®.7,(1) — Ker(sp(l))] ,
TEY
(3.1) 0 — H'(Xg, ZF)(1) — H' (X%, 7)(1) — X(F) — 0.

For z € X, let (X7), be the henselization of X7 at x and B, the set of two branches of Xi at = (i.e. the
1rredu01ble components of (X3);). For x € ¥, we define the module Z(z) and Z'(x) by

Z(x) := Coker [Z diag ZBI}
and
Z/(a) i= Ker [27 2 2]

Choose an ordering for B, for each zz € ¥ and define a base of Z'(z) by ¢, := (1,—1). Denote the dual
basis by d, € Z(z). We denote A = Z,. For x € ¥, one has H (Xk,R\I/ 0 for i # 1,2 and the trace

) =
map gives an isomorphism H2(Xz, R¥A) — A(~1) and H!} (X%, RYA) = Z(x) ® A. Moreover we have
R'®A, =+ Z'(z) ® A. Therefore we have the perfect pairing

(R'®A), x HY (X7, RUA) — H2 (X7, RVA) — A(-1).
This pairing gives the cospecialization map

0 — H(X7, RUA) — HO(X7,i*A) — € H} (X5, RUA)
TeEX

2y HY (X, A)— H (X7, i*A) — 0,
where XE — X7 is the normalization map.

3.2. Monodromy pairing. Let ¢ be a prime different from p and let I be the inertia group. We consider
the map t; : I — Z(1) which is defined by ¢ — o(w'/¢)/w!/¢, where w is the uniformizer of R. For o € I
and x € X, we define the variation map

Var(o), : (R'®A), — Hy(Xz, RUA)
by a +— —ezti(0)(ady)d,, and define the monodromy logarithm
Nyt (R'®A),(1) — Hi (X7, RUA)
by N.(t¢(c)a) = Var(c).(a) for a € (R'®A), and o € I. Then we have a commutative diagram
(R'®A), (1) —— Z'(z)® A

I -

HY (X7, RUA) —— Z(z) ® A,
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where the right vertical map ¢, is given by ¢, — —e;0,. Moreover we define the map N by the following

diagram:

H'(Xz.A)(1) = H'(Xp, RUA)(1) —"— @ (R'©.5),(1)
reEX

lN l@Nz

HY (X, A) = HY(Xp, RUA) 2 — @ HL(Xg, RUA).
€Y
Then we have an explicit description of the monodromy operator N.

Theorem 3.1 (Picard-Lefschetz formula [11]). Under the notation as above, we have the following formula:
N(ty(o)a) = (0 — 1)a for a € H' (X7, A) and o € I.
Let B be the set of irreducible components of Xz. Define the modules X and X by the exact sequences
0 —X—P7Z(z) —2° —Z—0

TEX
and R
0—7—72° — PZz) — X —0
TEX
Then the monodromy pairing
u: XX =27

is given by the diagram
X — DrenZ(v)

lu* J«GBQ:GE fo

X —— @xGE Z(x)
Also we have

X@A=Im |H Xz, A)(1) > @D(R'®A).(1)

A

and

X ® A = Coker [Ho(ik, A) = @5 H, (X3, RUA)
TEX

Therefore we obtain the diagram

HY (X7, M)(1) —— X®@A —— @ (R'OA),(1)
reX

[~ e |@n.

H' (X7, ) —— X@A «+—— @ HL(Xg, RUA).
TeEY

Note that the cokernel of u, is the group of connected components.
Let % be a locally constant Z,-sheaf on X. The cospecialization exact sequence is

0 — H(X3, RV.F) — H(X},i*F) — @D HN(Xf RY(F))
TeEX
2y H (X, F)— HY (X, i*.F) — 0.

Now we define the cocharacter group by

~

X(Z) :=1Im(3).
Then we have a canonical isomorphism (R'®.%), ~ (R'®\), ®.%, and a natural map H, (Xz, RUA)®.%, —
Hl(Xy, R¥(.Z)). These maps gives a generalization of monodromy pairing

A X(F) = X(F)
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by composition of the maps

HY (X%, Z)(1) — X(F) —— P (R'®F),(1)
TeEX

I b Jore

H' (X, F) +—— X(F) +—— @ HL(Xy, RU.F).
TEX

Then the monodromy operator N is described by the Picard-Lefschetz formula:
N(ty(0)a) = (6 — 1)a fora € H (X%, F) and o € I.
We define the component group by

&(F) := Coker |\ : X(F) — X(

Y

)] .

4. COHOMOLOGY OF SHIMURA CURVES

Let M be a positive integer and M = MM~ a integer decomposition of M such that M~ > 1 is a square-
free product of an even number of primes and (M™*, M~) = 1. Let B’ be the indefinite quaternion algebra
over Q with discriminant M ~. Fix a prime p dividing M ~. Let B be the definite quaternion algebra over
Q with discriminant M~ /p. We fix a Q-embedding ¢’ : K — B’ and an isomorphism ¢p p' : B =~ pp),
Also we fix an Eichler order Ry;+ of level M in B.

4.1. Moduli interpretation of Shimura curves. Fix a maximal order Op/ of B’.
Let S be a Z[1/M]-scheme. A triple (A, ¢, C) is called an abelian surface with quaternionic multiplication
with level M T-structure over S if

(1) A is an abelian scheme over S of relative dimension 2,

(2) ¢: Opr — Endg(A) is an inclusion defining an action of Op: on A,

(3) C is a subgroup scheme of A of order (M*)? which is stable and locally cyclic under the action of

Opr.

We denote by Fps+ p- the functor from the category of schemes over Z[1/M] to the category of sets
which associates to a scheme S to the set of isomorphism classes of abelian surfaces with quaternionic
multiplication with level M*-structure over S. If M~ is strictly greater than 1, the functor Fjs+ p/— is
coarsely representable by a scheme X+ /- over Z[1/M], with smooth fibers. The scheme X+ /- is a
smooth projective geometrically connected curve over Z[1/M].

Let d > 1 be an integer relatively prime to M and S a Z[1/Md]-scheme. A quadruple (A, ¢, C,v) is called
an abelian surface with quaternionic multiplication by Ops with level M T-structure and full level d-structure
if (A,¢,C) is a triple as above and

v (OB//dOB/)S — A[d]

is an Opr-equivariant isomorphism from the constant group scheme (Op//dOp/)s to the group scheme of
d-division points of A.

If d > 4, we have a fine moduli scheme representing the functor Fjs+ p/- 4 from the category of schemes
over Z[1/Md] to the category of sets which associates to a scheme S to the set of isomorphism classes of
abelian surfaces with quaternionic multiplication with level M *-structure over S and full level d-structure.
We denote it by X+ p/- 4. Then the Shimura curve X+ s 4 is a smooth projective curve over Z[1/Md].
We have a natural Galois covering

Y X+ - a = X+ v
with Galois group G, isomorphic to G/;/{+1}, where

G,d = (OB//dOB/)X >~ (R//dR,)X

/10 .
gU:<0 1> modd1fv|d}.

obtained by forgetting the level d-structure. We set

Ug = {g = (gv)v € E;\}-;-
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The complex uniformization of the Shimura curve X = X+ p/-4 is given by
X(C)=B\(C\R) x B" /U,

where U} = @B,B/(Uc(lp))C’)B;). For 2/ € C and ¥ € B'*, we will denote by [2/,b]c the point on X (C)
represented by (2/,0).

For a prime ¢ dividing M ™, we can consider a model of X = X M+ M- .d Over Zg using a variant of the
moduli functor Fys+ pr- 4. The resulting canonical model Xz, is a nodal model, that is,

(1) Xz, is proper and flat over Zg, and its generic fiber is X,
(2) the irreducible components of the special fiber X, are smooth, and the only singularities of Xp, are
ordinary double points.

For the prime p which divides M ™, one may define a model Xz, of X over Z, via moduli scheme. The
model X7z is a nodal model. Moreover, the irreducible components of X, are rational curves.

4.2. p-adic uniformization of Shimura curves. Let #H, be the Drinfeld’s p-adic upper half plane. Then
C,-valued points of H, are given by H,(C,) = P(C,) \ P}(Q,). Let H, be a formal model of H,, and there
is a natural action of B* on H, via ¢,. Fix a nodal model X7z,. Write X for the formal completion of X7,

along its special fiber. Then X is canonically identified with

BX\ 87,2 x B> juP),
where the action of b € B* on i;r is given by Frobgrde(b)([l, Theorem 5.2]). Let X®" be the rigid
analytification of X ® @, then X" is identified with

BX\HIJ@Qp@;r « E(?)X/U(P)7
and X (C,) is identified with

BX\HP((CP)XE(p)X/Uép)-

4.3. Bad reduction of Shimura curves. Fix a quadratic unramified extension Q,2 of Q. We denote the

ring of integer of Q2 by Z,2 and the residue field by F,2.For p|M~, the dual graph G,(X) of the special
fiber of XZp2 is defined to be the finite graph determined by the following properties.

(1) The set of vertices V(G,) is the set of irreducible components of special fiber XF -
(2) The set of edges £(G,) is the set of singular points of XF -
(3) Two vertices v and v’ are joined by an edge if v and v’ intersect at the singular point e.

Then the dual graph G,(X) is identified with .7,/T", where .7, = (£,(%,), Vp(.7})) is the Bruhat-Tits tree for
PGL2(Qp), and the p-adic uniformization of Xz, induces the following identifications:

(1) The set £(G,) is identified with the double coset space B*\B* /Uy(p), where

9PE<>S :) modp}.

(2) The set V(G,) is identified with (B*\B*/Uy) x Z/2L.

Ua(p) = {g = (gv)v € Ug

4.4. CM points on Shimura curves. Let 2’ be a point in C \ R fixed by too(K*) C GL2(R). We define
the set of CM points unramified at p on the Shimura curve X by

oMy () = { [,V

Ve B> 1, = 1} c X(K™).

Let reck : K* — Gal(K*/K) be the geometrically normalized reciprocity map. Then by Shimura’s
reciprocity law, we have

reci (a)[2',b]c = [/, (a)V]c.

Hence one has ¢, : CM5 " (X) — X (K,).
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4.5. Ribet’s exact sequence for higher weight modular forms. Let k£ be a positive even integer. Let
. be the lisse (-adic sheaf on the Shimura curve X+ /- 4 which is defined in Diamond-Taylor [13, §3].

We will use the sheaf # = ?k(%) ® O.

Denote the character group and the cocharacter group associated to the Shimura curve X+ pr- ¢ and
the sheaf .Z by X,(M*,M~,d) and XP(M‘*',M_,d). Also we denote by ®,(M™, M~ ,d) the component
group. Let ¥, = 3,(M™*, M~,d) be the set of singular points of the special fiber of X+ v 4 at p.

We fix a prime ¢ dividing M~ such that ¢ # p. Let T be the Hecke algebra acting on the character
group X,(M*,M~,d). Let T" be the Hecke algebra acting on X,(M*pg, M~ /pq,d). Let T” be the Hecke

algebra acting on X,(M*q, M~ /pq,d)? and let T be the polynomial ring with Z-coefficient generated by
indeterminates T, for vt Md and U, for v|Md.

Proposition 4.1. Let m be a non-FEisenstein mazimal ideal.
(1) (Ribet’s exact sequence) There is a Hecke equivariant exact sequences
0= Xg(M*q, M~ /pg,d)% — Xo(M*pg, M~ /pq, d)m — Xp(M T, M~ d) — 0
and

0= Xp(MT, M~ d)m — Xg(MTpg, M~ /pg,d)m — Xo(M*q, M~ /pq,d)z — 0.

k—4

(2) The action of U, € T" on Xy (M*q, M~ /pq, d)? is given by (x,y) — (TVx —p Ty, P ).
Proof. These results are explained in Rajaei [30, §3.2]. O

The Hecke algebra T’ is isomorphic to the Hecke algebra acting on SE(Ud, O) the space of quaternionic
modular forms on B of level Uy. The Hecke algebra T is isomorphic to the Hecke algebra acting on .S ,f/ (U}, 0).
Also the Hecke algebra T” is isomorphic to the Hecke algebra acting on the space of quaternionic modular
forms on B’ of level U}, which are old at p.

Lemma 4.2. There is a canonical map
wp : Ker[sp(1)] = @,(M*, M~ ,d),
where sp(1) + H*(Xpp+ pr- a @ Fp2, F)(1) = H*(Xpp+ p-a ® Qpe2, F)(1) is the specialization map.
Proof. For ¢ € Ker (sp(1)), let ¢ be a lift of ¢ by the map
@ (Rl‘by)m(l) — HQ(XMJr,M*,d ®F7p27¢0}\)(1)'

€Y,
Then the monodromy pairing induces the map
P (R07),(1) » @ HA(Xa a4 ® Fya, RUF).
z€Yp z€Xp
Also we have a natural surjective map
H}(Xar+ ar-.a ® Fpp, RUF) — X (MT, M, d) — &, (M, M~ d).
Moreover one can see that the image of ¢ in the component group does not depend on the choice of lift of
c. Then we define wy(c) by the natural image of ¢. O
Proposition 4.3. Let m be a non-Eisenstein maximal ideal. Then the map w, induces a ﬁ—equivariant
isomorphism
Wy 1 Xg(MTq, M~ [pq, d)m x Xo(MTq, M~ /pq,d)m/((U})* — p*72) = (M, M~ , d)m.
Proof. Write X, for X,(M™*, M~ , d)m, X{, for Xo(M*pg, M~ /pq, d)n and X[ for X(M*q, M~ /pq,d)n. Let
"o~ " VR ¢/
Ag 1 X x X = X x Xy
and
!~ &
Ag 1 Xy = X,
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be the monodromy pairings, hence the cokernel is @ x @, and @}, where @ = ®,(M*q, M~ /pq)m and
P}, = O(MTpg, M~ /pq)m. Let

i:X, X,
be the map as in the second exact sequence of Proposition 6.5 (1) and
(4.2) 6, X x XY = X[ /N (X))

the map obtained by the first exact sequence of Proposition 6.5 (1).Then the cokernel of &Y is @, =
®,(M*,M~). Let R

Jo : X x X — X[ /A (6(X,)).
be the composition of the map Aj with & : X;’ X FAig — X; as in the first exact sequence of Proposition 6.5
(1). Moreover we define the map o : Xy x X[ — X7 x X[/ by

k=2
(z,y) = (p+ Dz +T)y,p 2 Tyz+ (p+1)y).

One obtains a commutative diagram

A ~ ~
0 — XUxX! —0s KUK —— XD —— 0

ol l
0————>X”><X”————>X’/)\’(( p) — &, —— 0.

In fact @; = <I>g = 0. A direct calculation shows that the composition of the morphism

k=2 k-2
(z,9) = (=p 2 z,Tjx—p 2 y)
of X| x X with o gives the action of (U[’,)2 — p#~2. By the snake lemma, we have the isomorphism
XU x XV/(U)? = p"2) = @p(MT, M, d)m.
O

4.6. Integral Hodge theory following Jordan-Livné. In this section, we give a different description
of the component groups following Jordan-Livné [20]. Let Xz, be the integral model of the Shimura curve
X+ v .4 over Zyp discussed in the beginning of 86. Let X be the special fiber of X“f? = Xz, ®Z," and X,
the generic fiber. Define
gpa @ﬁ H2 st‘g)( ))
yel
and

NGy 7) =P 7. | = P R'©2).0) ],

T€Yp z€Yp
where G, = G,(X) is the dual graph of the special fiber of Xz, and I is the set of irreducible components of
X,. We fix an orientation of G, that is, a pair of maps s,t : £(G,) — V(Gp) such that s(e) and t(e) are the
end of the edge e. Consider the map
d: Co(gp:j\) — Cl(gp,ﬁ)

defined by (y = fy) = (¢ = fya) — fo@)), Where f, € F, and fyoy, fo@) € Fo = H)(s(x),r*F)(1) =
HO(t(z), r*F)(1) (where * : Xy — X, is the normalization map). Note that 7*.% is a constant sheaf on
t(z) U s(z). Then we define the cohomology H*(G,, %) by the exact sequence

0 — HY(Gy, F) = C°Gp, F) % CH(Gp, F) — H Gy, F) — 0.
On the other hand, we consider the map
§:CY Gy, F) — C°Gp, F)
defined by (z — fz) = (y = >2y(4)=y f2). The Laplacian 00 = [J; : CYGp, F) — CUGp, F) is defined by

[0; = dd + dd. Hence we have [y = (5d and O = dé. A cochain c is called harmonic if O;c = 0. Let H* be
the O-module of all harmonic cochains.
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Definition 4.4. We set
@ (MY, M~ ,d) = H"(Gp, ) /H"
and

N (MT, M~ ,d) = 6C"(Gp, F)/00C*(Gyp, F).

Remark 4.5. The definition of ®” is different from the notation used in Jordan-Livné [20]. The definition
of ® corresponds to the Grothendieck’s description of component group and the definition of ®” corresponds
to the Raynaud’s description of component group.

Lemma 4.6 ([20], Proposition 2.14). There are canonical identifications
O (MT,M™,d) = Sp(MT, M~ ,d) = &,(M", M~ ,d).
In particular, the map wy, is surjective.

Now for each irreducible component Y we fix a non-singular point Py on Y. Let & be a closed point
of X, such that x = & mod p is not a singular point. We may assume that x = Py for some irreducible
component Y. Denote

HZ(X7, .7)(1)° := Ker [H2( X7, F)(1) = H*( X7, Z)(1)] .
Lemma 4.7. There exists a natural map
H2(X7, F) — H2(Xs, RV.F).
Proof. Let z be the Zy*-valued point of X determined by Z. Let i z2i x> zandiz:d — X5 be
canonical maps. Also define i, and i, similarly. Then by definition one has
H}(Xy,j'F) = H(%, Rizj 7)
and this is isomorphic to H Q(x,E/*Rj;Rf;j*ﬁ ). It is known that the last cohomology is isomorphic to

H 2(:B,7*RE!ZREJ*§ ) (See Fu [14, Proposition 8.4.9]). Therefore using adjunction morphism we have a
natural map

H%(z,i"Ri.Rj,j* ) — H2(x, Riyi' Rj,j"F) = HX(X,,i R}, F).
O
We define the reduction map red, : H2(X7, #)(1)° = H?(X;,i*%)(1) by the composition of the maps
HE(Xq,.7)(1)° — Hi(Xs, RVF)(1)
— HZ (X, 7"7)(1)
< @ HE, (X, 7))
vel

= H*(X,,i*7)(1),
where the first map is obtained by the above lemma and the second map is the inverse of the specialization
map

sp(1), : H2(X,,i*F)(1) — H2(Xs, RU.F)(1)

(since x is a smooth point, sp(1), is an isomorphism). Then the image of the reduction map is contained in
the kernel of the specialization map

sp(1) : H*(X,,i*.7)(1) — H*(X,, RU.Z)(1).
Using the identification of component groups, we define the map
dy + HX( X7, F)(1)° — &,(M*, M, d)
by the composition of the maps
H2(X5,7)(1)° =5 Ker [sp(1)] = 6C(Gy, F) — LM+, M~ ,d) = &,(M*, M~ d).
Combining these facts, we have the following proposition.

Proposition 4.8. For ¢ € H2(X7, 7)(1), we have d,(c) = wp(red,(c)).



16 MASATAKA CHIDA

5. LEVEL RAISING OF MODULAR FORMS
In this section, we prove a level raising result for modular forms on quaternion algebras.

5.1. A freeness result on the space of modular forms. Let N be a positive integer and N = NTN~ a
integer factorization of N, where N~ is a square-free product of an odd number of primes. Let f: BX\EX —
Li_2(0O) be a A-normalized ¢-adic modular form corresponding to f via Jacquet-Langlands correspondence.
Let ¢ be a prime number dividing N~ and p a prime number which does not divide N. Let B’ be the indefinite
quaternion algebra over Q with discriminant pN~. Choose a positive integer d such that (d, Np) = 1 and
0§ #(Op /dOg)*. Write TZ(NT) (resp. TP (N*)) for the Hecke algebra acting on the space of f-adic
modular forms SP(N*,0) (resp. SP'(N*,0)). Set T = TP(NT)p and TP = TF'(N*)p. We denote by
t, and u, (resp. T, and U,) the Hecke operators in T (resp. T)). The modular form fyields a surjective
homomorphism
A fe T — On
We write Zy for the kernel of Ay, and m for the unique maximal ideal of T containing Zy.

Proposition 5.1. Assume that the residual Galois representation py satisfies (CRT). Then SE(N*t,0)n
s a cyclic Ty-module.

Proof. Since this proposition follows from the same argument with [8, Proof of Proposition 6.8] and [33,
§2 and §3], we only give a sketch of the proof. Let M™ be an integer such that (M, N~) = 1 and let
M = M*TN~. Write S(M) = SP(M™,0). Let T be the Hecke algebra generated over O by Hecke operators
T, for g4 M and U, for q | M in Endp S(M). Let A\ : T(N) — O be the O-algebra homomorphim induced
by 7. We denote byN(ps) the Artin conductor of p;. Let Ni be the product of prime factors of N(py).
We set Ny = N (ﬁf)Nl_ . By the level lowering and raising, there exists a modular lifting Ay : T — O such
that \g(7},) = A\ (T;) mod mp for all g N. We write

N=nNy[[a™
q
Let 3 be a set of prime factors of N/Ny and set Ny = Ny[[ 5 ¢™. Let my be the maximal ideal of
T(Ny,) generated by me, Ty — A\g(Ty) for ¢ Ny and Uy — A (Uy) for q | Nx. Let Ty, = T(Nx)my, be the
localization at my. Similarly, we denote the localization of S(Nyx) at my by Sy. By [8, Lemma 6.3], we

have a surjection Ty, — Ty. Let Ay : Ty, — T ﬂ) O be the composition and Iy, the kernel of Ay. Set
Ss[As] = {z € Sg | iy = 0} and Sx[As]t = {z € Ss ®o E | (z,y)r, = 1 for all y € Sx[\x]}, where
Ry, = Ry, /n- is an Eichler order of level Ny, /N~. Then Sg[As]t D Sg[\s]. We define the congruence
module of Ay by C(Nx) = Sx[Asg]+/Ss[As] and the congruence ideal of Ay by 7z = Ax(Annty (1))

Let MFq,,0, denote the abelian category whose objects are finite length O-modules D together with a

distinguished submodule D° and Frobg, ® 1-semilinear maps ¢1_f : D — D and ¢q : D° — D such that

e ©1_i|po = F1py and

o Imy;_+Impy=D.
Then there is a fully faithful, Z,-length preserving, O-additive, contravariant functor Ml from MFq, o
to the category of continuous O[Gal(Q,/Q,)]-modules with essential image closed under the formation of
sub-objects.

Consider the functor 25 from the category of local Noetherian complete O-algebra with the residue field
ko = O/mp to the category of sets which sends A with the maximal ideal my4 to the isomorphism class of
deformations p : Gal(Q/Q) — GLa(A) of p; satisfying

(1) det p = ¢, where g, : Gal(Q/Q) — Z, is the f-adic cyclotomic character,
(2) p is minimally ramified,
(3) for each finite length quotient A/I of A the O[Gal(Q,/Q,)]-module (A/I)? is isomorphic to M(D)
for some object D of MFgq, 0.k,
(4) for q||Nx /Ny, there exists a unramified charcter §, : Gal(Q,/Q,) — A* such that
(5(1_ 164 *

P|Ga1(@q/<@q) ~ < 0 (5q> and 04(Froby) =1 mod my, and
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(5) if ¢ | Ny, then p|Gal(@/Qq) satisfies

:l:eg *

Under the assumption (CR™), it is known that % is represented by the universal deformation

PRy, : Gal(Q/Q) — GLa(Ry).

Then the universality of Ry, gives rise to surjections of O-algebras Ry — Ry and Ry — Ty by [8, Lemma
6.5] and [33, Lemma 2.1]. Let px be the kernel of the O-algebra homomorphism

Rg — R@ — T@ ﬂ) 0.
By the Taylor-Wiles argument in [33, §2], we deduce that S(Np)m, is a free Ty-module of rank one and

#(0/95) = #C(Np) = #(O/m).
Using the argument in [33, §3], we have

#(0Q./90,) = #C(Ng,) = #(0/nq,),

where Q2 is the set of prime factors ¢ | N/Ny with m, = 2. By [8, Lemma 6.4] and [8, Corollary 6.7], the
above equality implies

#(ps/%) | #C(Ns) | #(O/15).
Then the proposition follows from [12, Theorem 2.4]. O
Proposition 5.2. Let ¢y : SB(NT,0) — O be the map defined by h — s(h) := <]?, h)r, where R = Ry+.
Then v induces an isomorphism
Vv SE(NT,0)/Zf = O,
Proof. By Proposition 5.1, S,f(N+,(9)m is a cyclic Ty-module. Hence S,f(NJF,O)/If is generated by a
modular form g. Since 1), is surjective and Hecke operators in T are self-adjoint with respect to the pairing

(, )r, we have that ¢¥¢(9) = (f,9)r € O, and the annihilator of g in T is Zy. Therefore we have an
isomorphism SP(N',0)/Z; 2 T/I; = O,. O

5.2. Level raising.

Theorem 5.3. Let p be an n-admissible prime. Assume that the residual Galois representation py satisfies
(CRY). Then

(1) There ezists a surjective homomorphism
)\[f] . TP — 0,

such that )\[Jf’} (Ty) = Af(tq) for all g t Np, AE{J](UQ) = Af(uq) for all ¢ | N, and )\Bcp](Up) =c-p 2,
where € = £1 is such that A" divides pg —i—p% — e Af(tp).

(2) Let Ij[cp] c TP denote the kernel of the homomorphism )\5?} and ®,(Nt, N~p) is the component group
associated to the Shimura curve X+ y-, and the lisse sheaf 7. Then there is a group isomorphism

by
(Nt N7p)/I} = SP(N*,0)/1; = 0,

Proof. Let B’ be the indefinite quaternion algebra over Q of discriminant N~ /q and ngq an Eichler order
of level NTq. Denote the Shimura curve associated to U, by XU&‘ Also we write the character group for the
Shimura curve Xy and the lisse (-adic sheaf § at ¢ by X¢(Uy). Let 2q(Uy) be the set of singular points on

the special fiber of Xp. Moreover since Xq(Uy) is identified with B*\B* /Uy, we obtain the identification

P R'eF).=2 P Li(0) = SFUL0).

zeXq(U)) z€Xq(U))
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Taking ]/%KH /Ug-invariant part, we obtain the Hecke-equivariant isomorphism
P (r'oF). = SF(N*,0),
€Yy

where ¥ is the set of singular points on the special fiber of a model of X y+4 n-/4- By [30, Proposition 5],
we have

XN, N~ /q)m = | D (R'DF).

€Y, m

Therefore by Proposition 5.1 one obtains the isomorphism
Xy(N*q, N~ /q)* /Ty ~ O;.

We denote by T/ and U}, the Hecke operators in TPl. There is an action of T”! on X,(N+g¢, N~ /¢)? induced
by ¢, for vt Np and u, for v | N and the Hecke operator U; acts via the formula

k—4

(z,y) = (T)x—p~ 2 y,p" 'a).
Since p is n-admissible, the action of ¢, modulo Z; is given by ¢ - (pg + p%) Then the determinant of
U,+e -p¥ is 2p*(1 4+ p). Hence U,+e -p¥ is invertible on X,(NTq, N~ /q)?/Zs. These facts implies the
isomorphism
_ k=2 _ —
X¢(NTq, N~ /0)*/{Z;, Uy —e-p 2 ) =Xg(NVq, N /q)?/(Zs,(U})* — pF2) = O

k—2

Thus, the action of T on Xq(N*tq, N‘/q)2/(l'f7 UI’) —e-p 2 ) is given via a surjective homomorphism
X TPl — 0,

Denote the kernel of )\’f by I}. Then Proposition 6.5 and the residual irreducibility of m implies the existence
of an isomorphism

O, (N*, N7p) /T = X((N*q, N~ /q)*/(Zy, (Uy)? = p*72).
This shows that )\’f factors through T which gives )\E?] and ®,(NT, N~p) /I][cp Vi isomorphic to O,,. Let m[)
be the maximal ideal of TP! containing Ij[cp]. The embedding SZ(NT,0) 1 — SE(N‘F,O)%% given by
x + (2,0) induces an isomorphism

m[P

k—2

k k=2, k=2
SPNY,0) i /(eT, —p2 —p 2 ) =SP(NT, 002 /(U —ep'7).
Therefore we have
Y5
©,(N*,N"p)/T}) = SP(N*,0)/1; = O,
O

Write Xl[ip} for the Shimura curve Xy+ y—, 4, Xap for X,(NT,N7p,d), Xd’p for Xp(NﬂN*p, d) and
®4, for ®,(Nt,N"p,d). Also write X! for the Shimura curve XN+ n—p» Xp for X,(NT,N7p), X, for

~

X,(NT,N~p) and @, for ®,(NT, N~ p).

Proposition 5.4. Under the assumption (CRT), the Galois representations H' (X! ®@,9’)(1)/Ij[cp] and
T}, are isomorphic.

Proof. Let m[f] be the maximal ideal containing Ij[cp]. Then TP / m[f] is isomorphic to 01 = F). First we will
show that H' (X" © Q,.%)(1)/ mgcp} is isomorphic to T';.

By (3.1) and the fact H' (X! @F2, F) = XP (see Rajaei [30, p.52 (3.5)]), one obtains an exact sequence
(5.3) 0~ Ep/mf) @ s — H'(XW 0 Qe ) /mf © iy — X, /mf! 0,
where ) = Zy(1) ® O/NO. Taking the Galois cohomology over Q,2, we have the exact sequence

Xp/mfl HY Q2 (Rp/mf) @ pp) = H'(Qpp, H (X @ Qe #) /m) @ ).
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Since p is an admissible prime, A does not divide p? — 1, hence we have the identification
H' Q2. %y /my, @ pa) 2 Kp/mif

By the main theorem of [6] and Eichler-Shimura relation, H'(X"! ® Q,.%)(1) /m[]]f} is semisimple over
F[Gal(Q/Q)], we have that
HY(XP 0 Q,7)(1)/mf = (Ty,)"
for some r > 1. Therefore Hl(ng,Hl(X[p] ® Qp2, fi)(l)/m&cp}) is isomorphic to H'(Q,2,Ty,1)". By Lemma
2.5, the F-vector space H I(sz,TfJ)” is 2r-dimensional. We claim that
(5.4) dimg X, /mlf > r.

To see this, assume that dimy X,/ mgfﬂ < r — 1. Then we have dimp Xp / mgf’] > r + 1 by the exact sequence

(5.3), which implies dimgp @, /m[f] > 2 by the definition of the component group. This gives a contradiction.

By the Picard-Lefschetz formula, the monodromy operator N is described as N(a ® t¢(0)) = o(a) — a for
all a € H' (X @ @,ff)(l)/m?ﬂ and o € I. One notices that the monodromy operator N acts on each
piece Ty, thus N defines the map N : Ty (—1) @ py — Ty 1(—1).

Lemma 5.5. The map N : Ty 1(=1)®@px — Ty1(—1) is the zero map. Equivalently, the monodromy pairing
1s the zero map. In particular, Xp/m[}p} is isomorphic to @p/m[f].
Proof. If N is non-trivial, we have the inequality
dimg Im [N : H'(Qpe, Ty (—1))" = H'(Qpe2, Tp1)"] > 7
The definition of the monodromy pairing implies
Im(N) = Im [, : X, /m? X, /mP]
where ), is the monodromy pairing and its cokernel is the component group ®,/ m[f]. Since
dimp X, /m — dimz Im(N) = dimg ®,/m?’ = 1,
we have the inequality dimp Xp / mgcp] >r+1 by (5.4). Hence one obtains
dimg HY (X @ @y, ) (1) /m > 2r 4 1.
This gives a contradiction. (I
Since A { (p? — 1), we have the identifications

H'(Qype, p/mgcp]) = Homunr(Gal(@/sz),Xp/mg?]) = Hom(O/)\O,Xp/m[f]).
Therefore we have the exact sequence
(5.5) Ty /mf = H'(Qpe, B (X ©Qpe, 7)(1)/ml) > HLp(Qye, Xp/mf)),

where 5p/m[ff} is a quotient of <I>p/m50p]. Recall that Hl(sz,Hl(X[p] ® Qp2, 9)(1)/111[;3}) and it can be
decomposed as the direct sum of two r-dimensional subspaces. Furthermore, one of the subspace is generated
by unramified cohomology classes and the other by ramified cohomology classes. By Theorem 5.3, the group

P, /m[f] is isomorphic to O/AO. Hence by the exact sequence (5.5) we have r = 1 and ®, /mg?] = Qp/mgcp}.
Therefore H' (X @ Q,.7)(1)/ mgcp} is isomorphic to T';.
Next we show that H(XP@Q, .#)(1) /Ij[fp] is isomorphic to T%,,. There is a natural Gal(Q/Q)-equivariant
projection
H(XW 0@ 7)1)/1f - B (XY « T #)(1)/m]
By the exact sequence

0 Kp(V/ZP —» B (XP 0 o, 2)(1)/T] > Xy/ZJ = 0
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and the fact that the group CIJP/I}[?] is isomorphic to O, we can take an element ¢; in HY(XP@Q, 9)(1)/2}])]
which generates a subgroup C' isomorphic to ©,,. Hence we can choose t1,t, € HY(XP @ Q, .7 )(1) /I}p] such
that H'(X" ® Q, 9)(1)/1}?} =2 O - t1 @ O, - ta with r < n. Since the residual Galois representation p; is
absolutely irreducible, one has

74(F[Gal) = Ends(T},1) = Endo(H'(XP @ Q, #)(1)/mlf).
Therefore there exist h € ﬁf(F[GQ]) such that hty = aty + bty with a € O*, b € O. This implies r = n and
HY(XP ®Q, ﬂ)(l)/l}p} is isomorphic to O2. Hence, H' (X" © Q, ﬁ)(l)/Z}p] is isomorphic to T y,. O

Let Ok m = Z + mOk be the order of the imaginary quadratic field K of conductor m. Let K,, be the
ring class field of K of conductor m. Write &, for @plp ®,,, where the sum is taken over the primes p of

K, and ®, denotes the component group associated to the Shimura curve X [P} and the lisse sheaf .Z at p.
Since the prime p is inert in K, it splits completely in K,,/K. Hence, the choice of a prime of K,, above p
identifies ®,, ,,, with ®,[G,,]. Therefore, we have an isomorphism

By /T = OG-

For X = X or Xc[lp], let X, be the generic fiber of Xz, ® Z," and X the special fiber. For a Q)'-valued
point z on X, denote

HZ(Xy, F)(1)° = Ker[HZ (X, 7)(1) = H)(Xy, F)(1) = H*(X7.7)(1)].
Then we have a canonical map H2(X,,.%)(1)" — H*(X,, #)(1)? := Ker[H?*(X,,, #)(1) — H*(X7.7)(1)].
Let Ig, be the inertia group and I(t@p the tame inertia. By the Hochschild-Serre spectral sequence

Ey! = Hi(Ig,, H (Xy, #)(1)) = HM(X,, #)(1)

we obtain a map H?(X,,.#)(1)° - H'(Ig,, H' (X7, #)(1)). Assume that d > 4. Since Xc[lp]Zp is semistable,
RVU.Z is tame (Illusie [17, Theorem 1.2]). Therefore this map induces

o (XY 7)1 — B\, H\ (XD, RU.Z)(1) = H\(I , H (X J2, 7)(1)).

On the other hand, we have a map Hg(X[p}

o F)(1)° — Hl(If@p, Hl(ng]ﬁ, Z)(1)) by the composition of maps

dp
HA(XY 7)) — X, 7)1)° 2 4, L BV (1, HN (XD 7)(1)),

where the map (3 is induced by the monodromy pairing

HO(I,, Xap) (2 Xap) > HY (I HY XD *.7)(1))(2 Xa,p) — H (I, HN (XL 7)(1)).

Theorem 5.6. (1) Letx be a Q)" -valued point on X! such that  mod p is a non-singular point. Then,
there is a commutative diagram

HA(XP, 7)(1)° ——  HAXP, 7))

| L
B
o, — NI HY (XD, 7)(1)).
(2) The map B induces an isomorphism
(I)P/I][”p] = Hsling(Qp27Tf7n)'
Proof. For the first part, it is enough to show the commutativity of the following diagram:

Pz 2l 2)a)e

B, P w1 (x P, 7)),
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Fix a topological generator ¢ of the tame inertia I@p. First we work with the Shimura curve Xc[lp] instead of

X By [31, Lemma 1.6], we have a distinguished triangle
— *Rj, A — RUA 2% RUA T

where A = Z,. Since the action of ¢ on i*.% is trivial and .% is extended to the model of X smoothly, we
have an isomorphism *.# ® RUA = RU.#. Therefore one has a distinguished triangle

5 i*Rj,.Z — RU.Z A puz 1

Let v be the composition of morphisms

Vi z j
ROF — (P(ROF), B, Ya(o) PBi..i,RVF % RUZ.
LIS TeEX
Then we have the following commutative diagram:

. *F — 3 RVF — 5 ROF 1,
| | [
— % *Rj.F —— RVZ Y puvy tL,

Taking cohomology H'(X C[ip l, —), one has the following commutative diagram:

BY(XP RV.F) —— H'(XV ROF) —— HAX[,i*F) —— HX(XF RUZ)
| [ > |
(XY RV.F) —— HY(XP RV.Z) —— HBX(XJ,i*Rj.F) —— H*(XY), RU.Z)

H(X[, 7) = H(X[7) ——  HX[.7) —— X[7),

where 7/ is the composition of morphisms
Var(o

(X, Ro.7) = P(rROF), =S P HLXP, RUZ) —» B (XP, RUZ).
IS TeEX
Then one can see that 0 : Hl(XC[lp%,ﬁ) — H2(Xc[lp}7,ﬁ) factors through the coinvariant H' (Xc[lp]ﬁ, Fo1 =
Hl(I@p, Hl(Xa[f%, Z#)) and the map Hl(I(ap,Hl(Xc[f]ﬁ, F)) — HZ(XC[{?J?, F) coincides with the inverse of the
map obtained by Hochschild-Serre spectral sequence. Applying the projector €; defined by
1
€4 = ZG, Z g9 € QG4
d 9g€Gyq

the first part of the theorem follows. Since T, is unramified at p and A does not divide p, one has
Hl(IQp,Hl(X%p},ﬁ)(l)/I}p]) = Hl(I@p,Hl(X%p},ﬁ)(l)/I}p]). Therefore the second part follows from the
discussions in the proof of Proposition 5.4. O

6. KUGA-SATO VARIETIES AND CM-CYCLES

6.1. The /-adic Abel-Jacobi map. Here, we recall some basic facts on f-adic Abel-Jacobi map following
Jannsen ([18], [19]).

Let Y be a proper smooth variety over a field F' of characteristic zero. For an integer ¢ > 0, write
CH!(Y/F) for the Chow group of algebraic cycles defined over F of codimension i on ¥ modulo rational
equivalence. Fix a rational prime ¢. Then one may define the cycle class map

cl: CH(Y/F) — H% (Y, Zy(i)) %"

and we denote by CH*(Y)g its kernel. Note that this definition does not depend on the choice of the prime
¢ by Lefschetz principle and comparison theorem between étale cohomology and singular cohomology.
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The cycle class map cly factors through H? (Y, Z(i)), then the Hochschild-Serre spectral sequence
H'(F, HY (Y, Ze(k))) = H™ (Y, Zo(k))
induces the f-adic Abel-Jacobi map
AJy: CH(Y/F)o — H'(F, H* ' (Y&, Zo(K))).

By Jannsen [18] we have the following geometric description of the ¢-adic Abel-Jacobi map. Let Z be a
homologically trivial cycle on X defined over F' of codimension i representing an element in CH*(Y/F)y.
The pull-back of the extension of G p-modules

0 — H2i71(Yf, Zg(l)) N H2i71(YF\ ’ZFI,Z[(Z))
— Ker HﬁZifl (Y, Zy(7)) — H%(Yf’ Ze(i))| — 0

by the map Z;, — HEZZ%' (Y3, Zy(1)) sending 1 to b(Z), where b(Z) is the cohomology class of Z.

6.2. Kuga-Sato varieties over Shimura curves. To construct global cohomology classes in H*(K,,, Ttn),
we will use the image of algebraic cycles on Kuga-Sato varieties under the ¢-adic Abel-Jacobi map. We keep
the assumptions and notations as in §4. Now we suppose that d is a prime greater than 3 which splits in

K and is prime to Nfp. Let 7 : szfd[m - X C[lp ) be the universal abelian surface over the Shimura curve X (Ep I,

Then we define the Kuga-Sato variety
T WE gl — X([ip}

by the kgz—fold fiber product over Xc[lp] of dd[p] with itself.

Since the action of O/ on %d@] induces an action of B’ on R'm,Qy, one may define

Lo = ﬂ Ker [b —1: R?r.Qp — RQW*QZ}
beB’

following Iovita-Spiess [16]. For an integer m > 2, let
Ay, Sym™ Loy — Sym™ 2 Lo(—2)

be the Laplace operator symbolically given by

where (, ) is the non-degenerate pairing

(,): Lo x L2 = R1.Qr® R?mQ 3 R'mQr 5 Qu(-2).
Let L;_o denote the kernel of Ax_z.
2
Then there exists a projector € defined as in Scholl [32] (also see Iovita-Spiess[16, §10]) such that
ea- e H (WP 0 Q,Qp) ®g, B2 egH (X)) © Q, Liz) ®g, E = HY(XP ©Q, #)(1) @0 F,

where €4 is the projector defined by
1
= - Gyql.
“@= & > g€ QG
9€Gyq
Note that
€k ( k7d®(@7 Qf) = €k ( k7d®Q’ Qg)
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6.3. Description on CM points. By the moduli interpretation of the Shimura curve X, a point on X 7!
is represented by a triple (A, ¢, C). For m > 0, there exists a point Py, = (Am, tm, Cr) such that End(P,,) is
isomorphic to Ok y,, where End(P,,) is the ring of endomorphisms of A,, which commutes with the action
of v, and respect the level structure C,,, and O ,, is the order of K of conductor m. The point P, is called
a CM point of level m. By the theory of complex multiplication, such point P, is defined over K,,, where
K, is the ring class field of K of conductor m.

Using the complex uniformization of the Shimura curve X!, the CM points of level m are defined by

Pula) i= [ 08,5 )] € XV(Q)

for each a € K *. By Shimura’s reciprocity law, one has
Pp(a) € CMT (X)) 0 X P(KCy,)
and Py, (a)? = Pp,(ab) for o = reck (b) € G- Set P, = Pp(1).

6.4. Definition of CM cycles. Here we construct CM cycles following Nekovar [24] and Iovita-Spiess [16].
Let X = X+ n- be the Shimura curve defined in §4 and let Py, = (A, tm, Crn) be a CM point of level m.
Then A,, is defined over the ring class field K,,,. Write NS(A,,) for the Néron-Severi group of A4,,. There is
a natural right B’ -action on NS(A,)g given by £-b = Nrd(b) Li,,(b)* (L) for b € B’ and £ € NS(An)g-
Note that our normalization is different from the action used in [16].

Since End(FPy,) ~ Ok, m and A,, has endomorphism by the maximal order Ops, A, has endomorphisms
by an order Op' ® O in B’ @ K ~ My(K). Hence A,, is isogenous to a product E,, X E,,, where E,,
is an elliptic curve with complex multiplication by Ok ,,. Write I',, for the graph of m\/Dg. Then, define
Zm to be the image of the divisor [[',,] — [Em x 0] — m?|Dg|[0 X E,] in NS(A,;,). It lies in the free rank
one Z-module ([E,, x 0],[0 X Ep], A, )" € NS(A,,), where Ap, is the diagonal.

Proposition 6.1. Assume that A has complex multiplication by Ok . Then there exists an element yp, in
NS(A) ®Q such that

(1) tm(b)*(Ym) = Ym for any b € B,
(2) The self-intersection number of yp, is 2Dk .

Moreover, y,, is uniquely determined up to sign by these properties.

Proof. This is a direct generalization of [16, Proposition 8.2]. In particular, y,, = m~'Z,, satisfies the
properties. (I

Remark 6.2. Since we use a different normalization for the action of B’ on NS(A,,)g with [16], the
formula (1) in Proposition 6.1 is different from the corresponding formula in [16, Proposition 8.2].

Let t denote the number of prime divisors of Np, h,, the class number of K,,. Then there are exactly
2'h,,, CM points of conductor m (see Bertolini-Darmon [2] for details).

Let W be the Atkin-Lehner group of order 2! generated by all the Atkin-Lehner involutions I/VqJr with
q | N* and W, with ¢ | N™p. Write G, for the Galois group Gal(K,,/K). One can identify the Galois
group Gy, with Pic(Og ) via geometrically normalized reciprocity map. The group Pic(Og ) x W acts
simply transitively on the set of CM points.

Recall that d > 4 is an integer relatively prime to Np and

T = %[p] — X(Elp}
is the universal abelian surface and
¥ X xTo)
the natural morphism. Let P,, = P, (1) be the CM point of level m defined as above and let Py, be any point
on X[[ip] such that 1(P,,) = Pp,. The fiber Ap = 7~ Y(Pp,) is an abelian surface with Endo,, (45 ) = Okm.-
By Proposition 6.1, there exist an element y,, € NS(A ﬁm)Q satisfying

(1) tm(b)*(Ym) = ym for any b € B,
(2) The self-intersection number of y,, is 2Dk
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which is uniquely determined up to sign.
Let Yﬁm be an element of e, CH'(A ﬁm)Q representing Yp, - One may choose the elements Y];m satisfying
that

g*(Yﬁm) = for all P, € v Y(P,,) and g € Gy,

9 (Pm)
where g : A —> A B, 18 the automorphlsm induced by g € Gg.

Let jim : A = < AT = W,ijl be the inclusion of the fiber over Py, into the Kuga-Sato variety. We
define the element Zps of eg-e4CH 2(o/ /| Kim)g by the image of Y5 under the composition of maps

aCH (Ap o 3 exCHX (o [Kn)g <% ca- caCH (o [K)g.

We require that the elements Y} satisfy the compatibility with the action of W x Pic(Ok ) (see lovita-
k=2

Spiess [16, page 366] for details). Then we define the CM cycle Z,,? of level m by setting

k-2 k-2

Zu = ea- x(rm)a(Y5? ) € ea- xCH (W Kn)g € CHY2 (W /K)o

7. CONSTRUCTION OF EULER SYSTEMS AND THE EXPLICIT RECIPROCITY LAW

7.1. Construction of special cohomology classes. Let p be an n-admissible prime. Here we give a
description of the image of CM cycles under the ¢-adic Abel-Jacobi rnap following Nekovar [25]. Write Z,,

for the CM cycle of level m. Let K,[f]( ) be the image of CM cycle Z,, = under the /-adic Abel-Jacobi map
exo Adyp « CHY2 (WP /Ko p — HY (K, HA(XY @ Ky, 7)(1)) 8-

By the construction of the cohomology class, we have the following lemma.

Lemma 7.1. The global cohomology class kP)(m) := edn[[f]( ) belongs to HY(K,,, H(XP @ K,,,.%)(1)).

Let ]5m be a lift of the CM point P, of level m. Let

k-2 . _
cy: CH'F (A z )—>6ka_2(14§2 o Ko, Zo(F =2

m

)G

k=2 S
be the cycle class map. Then ed-eka_Q(Aff K, Zg(%))g}(m is isomorphic to H]%m (XPIQK,,, #)(1)Ckm,

By the similar argument of [25, Proof of (2.4) Proposition (2)], one can show that the image of ¥ = YIST

m

is represented by the pull-back of extension
0= H (XY @ B, 7)(1) » HYXP @ Koy \ B @ Ko, Z)(1)
< HE e (X @ Ko, Z)(1) % 0

by the map O — HIQJ o (X[p] ® Ko, F)(1)%%m sending 1 to exb(Y), where b(Y) is the cohomology class

of Yz—. We will compute the image
ca-exb(Y) € Hy —(XP @K, 7)(1).

Recall that there is an elliptic curve E,, with complex multiplication by Ok ., defined over K,, such that

A p.. is isogenous to E,, X Ep,. Then, Kiinneth formula and antisymmetrization gives a projection

k=2 R N
pry, s H*2(AZ @ K, Zo(k/2 = 1)) = H' (B @ K, Zo)®* 2 (k/2 = 1)
— (Sym* " HY(Ey, ® K, Za))(k/2 — 1).
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One obtains that the element excly(Y') belongs to the space (Sym*~2 HY(E,, ® K, Q¢))(k/2 — 1). There
exists a B, ~ B’ ~ GL2(Qy)-equivariant isomorphism

(Sym*=2 HY (B @ Ry @) (/2 — 1) =5 (Sym*2 HY (B @ Fomp, Q) (k/2 — 1)
= (Sym" 2 HY(Ep ® Fj2, Q) (k/2 — 1)
=L

k(Qe)

which preserves the intersection pairing. Therefore, we have an identification

2 Pl oo ~ g2 P T, =
Hﬁm®@(Xd @ Qp%ﬁ)(l) = HEm@@(Xd ®Fp2’y)(1) - Lk(@),

where Em = P,, mod p.
Lemma 7.2. The image of € - €xcle(Y) in Li(Qy) is given by v up to sign.

Proof. This follows from the fact that both elements satisfy the same properties:

(1) €4 - excle(Y) and v are eigenvectors for the action of K with eigenvalue 1.
(2) (eq-€xcle(Y), €q - excle(Y)) = (v, vf) = D';{Q.
These properties characterize an element in Li(Qy) up to sign. O
By Theorem 5.3, we have an isomorphism H'(XP ® K, ﬁ(l))/I][cp] ~ Ty, as Gal(K,,/K)-modules,
therefore > o eqkP)(m)7 defines a cohomology class KE?] (m) in HY (K, Ttr)-

s

7.2. The explicit reciprocity law. By Theorem 5.6 and the description of the ¢-adic Abel-Jacobi map
considered in the previous section, we have a commutative diagram

€q-€pAJ,
d €k 4

CHF2(W [P /K, ) HY (K, HN(XP 0 Ky, )(1))
ed-ekclgl lres
Dy H2(XV @ Ky, )(1) —2 Ho (Ko ps Ty )
Proposition 7.3. There exists a positive integer M such that
redyn (5], () € H} (K, Tn),
where p is a n + M-admissible prime.
Proof. For v|[dN™, by Lemma 2.3 and [4, Corollary 5.2] we have
redyn (resvngcp’]nJrM(m)) € H}(Km,van,n)

for sufficiently large M. For v|N~, since H(Ky, ,, Af) is finite, H?(Kp, p, Tf) = Hom(H®(Ky, ., Af), E/O)
is also finite. Hence for sufficiently large M, \M H 2(Km,v, Ty) = 0. The commutative diagram

0 7, X g et g 0
XAMl l: lred,\n
0 T, 2o S, 0
gives rise to
HY (Ko T) 2 HY(K oy T) —— H2(Kop, TN

:J{ J{red)\n lX)\A{

dyn
H (Ko, Ty) —2%  HY (K, Tin) ——  H* (K, T[]
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Therefore by the definition of H}(Km7v,Tf7n) and the fact H}(Kmﬂ,, Vi) = HY (K., Vy) (see Besser [4,
Proposition 4.1 (2)]), we have

redyn (reso (i), 1, (1)) € H} (Ko, Tr ).

For v { Ndlp, the CM cycle Z *3% is unramified at v, hence the class redyn (/ﬁ[;)]n 4 pr(m)) is also unramified at

v. For the case v|(, the Galois representation H! (X[[];L, Z (1)) is crystalline, since the Kuga-Sato variety Wkil

has good reduction at v. Hence by Nekovaf [26, Theorem 3.1(1)] and Niziol [29, Theorem 3.2], the image of
the /-adic Abel-Jacobi map is contained in H} (also see Nekovar [26, Theorem 3.1(2)] and Nekovér-Niziol
[28, Theorem B| for general case). Therefore one has

red,\n(resv(/igfj} (m))) € H}(Km,va HI(X[p] & Km,v’ g&’)(l)/l—}p})

n+M
Since the prime £ is greater than k — 1, one can use the Fontaine-Laffaille theory. Choose a Galois stable
lattice T" in a crystalline representation of G, , such that T/A"T = HY(XP ® Ky, ﬁ)(l)/I}p]. Denote
Ty = T and Ty = Ty. Let D; be a strongly divisible O-lattice in Deis(V;) = Dar(V;) (the equality follows
from the facts that K, , = Q2 is an unramified extension of Q, and V; are crystalline) for i = 1,2, where
Vi =T; ®p E. Define Df/z =D;N D’;Q(Vi) and ¢,/ = A5/2¢ where ¢ is the Frobenius morphism. By the
Fontaine-Laffaille theory, we have isomorphisms D1 /A" Dy = Dy /A" Dy and Df/ 2 / )\”Df/ ? DS/ 2 / )\”Dg/ 2,
1—

Moreover by Bloch-Kato [5, Lemma 4.5 (c)], h*(D;) = Coker[Df/2 ﬂm D;] is isomorphic to H}(Km,v, T;).
From these facts, it is easy to see

H} (Ko, HN(XP @ Koo, 7)(1) /T8 = HH K0, Th,0)
for v|¢. Therefore we have redn (resv(ﬁ%]n_i_M(m))) € H} (Km,v, Tfp) for v|f. This completes the proof. [

The relation between the image of the CM cycle in H}

sing(Km.ps Tf,n) and the theta element ©(fr/) is given
by the following theorem.

Theorem 7.4. There ezists a constant u € O, such that Op(redyn (/-c[p] (m))) =u-0O(fr) mod \".

n—+M
Proof. By Theorem 5.3, Theorem 5.6 and Lemma 7.2, one has

Oy (m) = Y (i Flamla)™ i [aln = O(far) € Oniar[Gn
[a]€Gm
up to O 7. Therefore the natural image in Oy, [Grn] satisfies the same property. O
Now, our main result (Theorem 1.1) follows from Theorem 2.8 and Theorem 7.4
Remark 7.5. Assume that p; is ramified at all primes dividing N~. Then we have
Qe n- = u-QF" for some u € 0.

This fact follows from Proposition 5.1 and the argument in [8, Proof of Proposition 6.1].
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