#### 数想空間 / QUARTIC

POV-Rayにおける4乗式の3次元関数"quartic"による曲面、難しい数学は苦手ですが、とんでもないオブジェクトが現れるものですからすっかり気に入ってしまいました。
"quartic"とは、次の関数解としての面です。
"quartic { ＜a00, a01,... a34＞ }" は、
a00 x^4 + a01 x^3 y + a02 x^3 z+ a03 x^3 + a04 x^2 y^2+
a05 x^2 y z+ a06 x^2 y + a07 x^2 z^2+a08 x^2 z+a09 x^2+
a10 x y^3+a11 x y^2 z+ a12 x y^2+a13 x y z^2+a14 x y z+
a15 x y + a16 x z^3 + a17 x z^2 + a18 x z + a19 x+
a20 y^4 + a21 y^3 z + a22 y^3+ a23 y^2 z^2 +a24 y^2 z+
a25 y^2 + a26 y z^3 + a27 y z^2 + a28 y z + a29 y+
a30 z^4 + a31 z^3 + a32 z^2 + a33 z + a34 = 0

参考までにシーンファイルのさわりの所を記しておきましたので、お試し下さい。

 quartic { <0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> rotate <30,0,0> } camera { location <-3, -3, -7> look_at <-1, -3, 0> angle 152 }

 quartic { <0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0> } camera { ultra_wide_angle location <-1, 3, -5> look_at <0, -0.3, 0> angle 220 }

 quartic { <1,1,5,0,0,0,50,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> } camera { ultra_wide_angle location <0.5, 0.4, 1.2> look_at <0, 0.25, 0> angle 360 }

 quartic { <0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0> } camera { location <-1, 3, -5> look_at <0, -0.3, 0> angle 60 }

 quartic { <0,1,-1,0,0,0,0,0,0,0,0,0.2,0,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0.1,0,0,4,0,0,-1> rotate <30,0,0> } camera { ultra_wide_angle location <10000, 0, 5000> look_at <-8000, 0, -10000> angle 200 }