Fibonacci numbers (n = 1 to 100)


The definition

F0 = 0
F1 = 1
Fn = Fn-1 + Fn-2(n >=2)

Further information is here.


  n : Fn (alen) = factors

  1 : 1 (1) = unit
  2 : 1 (1) = unit
  3 : 2 (1) = prime
  4 : 3 (1) = prime
  5 : 5 (1) = prime

  6 : 8 (1) = 2^3
  7 : 13 (2) = prime
  8 : 21 (2) = 3 * 7
  9 : 34 (2) = 2 * 17
 10 : 55 (2) = 5 * 11

 11 : 89 (2) = prime
 12 : 144 (3) = 2^4 * 3^2
 13 : 233 (3) = prime
 14 : 377 (3) = 13 * 29
 15 : 610 (3) = 2 * 5 * 61

 16 : 987 (3) = 3 * 7 * 47
 17 : 1597 (4) = prime
 18 : 2584 (4) = 2^3 * 17 * 19
 19 : 4181 (4) = 37 * 113
 20 : 6765 (4) = 3 * 5 * 11 * 41

 21 : 10946 (5) = 2 * 13 * 421
 22 : 17711 (5) = 89 * 199
 23 : 28657 (5) = prime
 24 : 46368 (5) = 2^5 * 3^2 * 7 * 23
 25 : 75025 (5) = 5^2 * 3001

 26 : 121393 (6) = 233 * 521
 27 : 196418 (6) = 2 * 17 * 53 * 109
 28 : 317811 (6) = 3 * 13 * 29 * 281
 29 : 514229 (6) = prime
 30 : 832040 (6) = 2^3 * 5 * 11 * 31 * 61

 31 : 1346269 (7) = 557 * 2417
 32 : 2178309 (7) = 3 * 7 * 47 * 2207
 33 : 3524578 (7) = 2 * 89 * 19801
 34 : 5702887 (7) = 1597 * 3571
 35 : 9227465 (7) = 5 * 13 * 141961

 36 : 14930352 (8) = 2^4 * 3^3 * 17 * 19 * 107
 37 : 24157817 (8) = 73 * 149 * 2221
 38 : 39088169 (8) = 37 * 113 * 9349
 39 : 63245986 (8) = 2 * 233 * 135721
 40 : 102334155 (9) = 3 * 5 * 7 * 11 * 41 * 2161

 41 : 165580141 (9) = 2789 * 59369
 42 : 267914296 (9) = 2^3 * 13 * 29 * 211 * 421
 43 : 433494437 (9) = prime
 44 : 701408733 (9) = 3 * 43 * 89 * 199 * 307
 45 : 1134903170 (10) = 2 * 5 * 17 * 61 * 109441

 46 : 1836311903 (10) = 139 * 461 * 28657
 47 : 2971215073 (10) = prime
 48 : 4807526976 (10) = 2^6 * 3^2 * 7 * 23 * 47 * 1103
 49 : 7778742049 (10) = 13 * 97 * 6168709
 50 : 12586269025 (11) = 5^2 * 11 * 101 * 151 * 3001

 51 : 20365011074 (11) = 2 * 1597 * 6376021
 52 : 32951280099 (11) = 3 * 233 * 521 * 90481
 53 : 53316291173 (11) = 953 * 55945741
 54 : 86267571272 (11) = 2^3 * 17 * 19 * 53 * 109 * 5779
 55 : 139583862445 (12) = 5 * 89 * 661 * 474541

 56 : 225851433717 (12) = 3 * 7^2 * 13 * 29 * 281 * 14503
 57 : 365435296162 (12) = 2 * 37 * 113 * 797 * 54833
 58 : 591286729879 (12) = 59 * 19489 * 514229
 59 : 956722026041 (12) = 353 * 2710260697
 60 : 1548008755920 (13) = 2^4 * 3^2 * 5 * 11 * 31 * 41 * 61 * 2521

 61 : 2504730781961 (13) = 4513 * 555003497
 62 : 4052739537881 (13) = 557 * 2417 * 3010349
 63 : 6557470319842 (13) = 2 * 13 * 17 * 421 * 35239681
 64 : 10610209857723 (14) = 3 * 7 * 47 * 1087 * 2207 * 4481
 65 : 17167680177565 (14) = 5 * 233 * 14736206161

 66 : 27777890035288 (14) = 2^3 * 89 * 199 * 9901 * 19801
 67 : 44945570212853 (14) = 269 * 116849 * 1429913
 68 : 72723460248141 (14) = 3 * 67 * 1597 * 3571 * 63443
 69 : 117669030460994 (15) = 2 * 137 * 829 * 18077 * 28657
 70 : 190392490709135 (15) = 5 * 11 * 13 * 29 * 71 * 911 * 141961

 71 : 308061521170129 (15) = 6673 * 46165371073
 72 : 498454011879264 (15) = 2^5 * 3^3 * 7 * 17 * 19 * 23 * 107 * 103681
 73 : 806515533049393 (15) = 9375829 * 86020717
 74 : 1304969544928657 (16) = 73 * 149 * 2221 * 54018521
 75 : 2111485077978050 (16) = 2 * 5^2 * 61 * 3001 * 230686501

 76 : 3416454622906707 (16) = 3 * 37 * 113 * 9349 * 29134601
 77 : 5527939700884757 (16) = 13 * 89 * 988681 * 4832521
 78 : 8944394323791464 (16) = 2^3 * 79 * 233 * 521 * 859 * 135721
 79 : 14472334024676221 (17) = 157 * 92180471494753
 80 : 23416728348467685 (17) = 3 * 5 * 7 * 11 * 41 * 47 * 1601 * 2161 * 3041

 81 : 37889062373143906 (17) = 2 * 17 * 53 * 109 * 2269 * 4373 * 19441
 82 : 61305790721611591 (17) = 2789 * 59369 * 370248451
 83 : 99194853094755497 (17) = prime
 84 : 160500643816367088 (18) = 2^4 * 3^2 * 13 * 29 * 83 * 211 * 281 * 421 * 1427
 85 : 259695496911122585 (18) = 5 * 1597 * 9521 * 3415914041

 86 : 420196140727489673 (18) = 6709 * 144481 * 433494437
 87 : 679891637638612258 (18) = 2 * 173 * 514229 * 3821263937
 88 : 1100087778366101931 (19) = 3 * 7 * 43 * 89 * 199 * 263 * 307 * 881 * 967
 89 : 1779979416004714189 (19) = 1069 * 1665088321800481
 90 : 2880067194370816120 (19) = 2^3 * 5 * 11 * 17 * 19 * 31 * 61 * 181 * 541 * 109441

 91 : 4660046610375530309 (19) = 13^2 * 233 * 741469 * 159607993
 92 : 7540113804746346429 (19) = 3 * 139 * 461 * 4969 * 28657 * 275449
 93 : 12200160415121876738 (20) = 2 * 557 * 2417 * 4531100550901
 94 : 19740274219868223167 (20) = 2971215073 * 6643838879
 95 : 31940434634990099905 (20) = 5 * 37 * 113 * 761 * 29641 * 67735001

 96 : 51680708854858323072 (20) = 2^7 * 3^2 * 7 * 23 * 47 * 769 * 1103 * 2207 * 3167
 97 : 83621143489848422977 (20) = 193 * 389 * 3084989 * 361040209
 98 : 135301852344706746049 (21) = 13 * 29 * 97 * 6168709 * 599786069
 99 : 218922995834555169026 (21) = 2 * 17 * 89 * 197 * 19801 * 18546805133
100 : 354224848179261915075 (21) = 3 * 5^2 * 11 * 41 * 101 * 151 * 401 * 3001 * 570601

What's new index Numbers still not completely factored

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima