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1 System environment and installation

Linux and gcc

Seven programs contained in “pmagt402.tar.gz” are paleomagnetic tools with CUI (character user interface).
They do only computations and do not use any of Generic Mapping Tools (GMT) of Wessel et al. (2013,
2019), while those in another archive “pmagm302.tar.gz” utilize the GMT 6 (5) tools. Hence, the programs in
“pmagt402.tar.gz” should work on terminals of most Linux systems. They are now working on “Ubuntu 22.04”
in which “gcc 11.4.0” is installed, but other Linux environment should be OK. Some of the numerical algorithm
used in the programs are adapted from those of Press et al. (1992).

Here, only the C sources are provided, which should be compiled by gcc. The programs are working on
terminals in which TC shell “tcsh” is used as a login shell, but using other shell is probably OK. Use these
programs at your own risk, although any problems have never been encountered. Nevertheless, you should be
familiar with the minimum level of Unix commands such as “ps” and “kill” in case freeze of program occurs
and “Ctrl+C” does not work.

Installation

Put “pmagt402.tar.gz” at a certain directory and extract by

tar xvfz pmagt402.tar.gz

“pmagt402” directory is created and enter to this directory by

cd pmagt402

Then compile the source files by

make

Executable files will be created under “pmagt402/bin” directory. Copy them to your usual binary directory such
as /usr/local/bin, etc. Each source directory, such as “pmagt402/tmean-src”, contains one or more test data files
which are usually named as “t-*.d”.

Starting the program

Typing only the program name shows its usage to the display as the following example.

Usage: tmean file [-Ppc -Ddiff -L -H]

Starting the program with the option “-H” (or, “-h”) shows a simple help message as the example below. The
message can be cleared by pressing “Q” (or, “q”).

HELP MESSAGE OF TMEAN
Test of a common mean V1.2, H. Tanaka, 2018.
Whether two scalar samples share a common mean is tested by
Student’s t-test (common variance) or Welch’s t-test (different variances).

Usage:
tmean file [-Ppc -Ddiff -L -H]

Options:
P -- significance level (default: 0.05)
D -- tests if mu1-mu2=diff (default: 0)

(assign a negative diff for mu2>mu1)
L -- lists original data at the last
H -- help message

1



Input file:
Data of sample 1 and sample 2 should be contained in a single file with
one datum per line. They are divided by a line with first letter ’>’ or ’<’.
Lines with first letter ’#’ or ’%’ are comments and are ignored.

Format:
# comment line can be placed at any place
X11 [notes ...] -- notes can be put after the datum
X12
X13

...
> -- this line separates two samples
X21
X22
X23
...

Output:
Results are written to stdout. To save them to a file,
use redirect as ‘‘tmean in_file > out_file’’.

(Q to quit)

In the following sections, typical application of the programs are illustrated by using the test data files
“t-*.d” contained in each source directory “pmagt402/*-src”.
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2 Statistical test for means

2.1 Test of a common mean: tmean

“tmean” tests whether two scalar data (samples in statistics term) share a common population mean. The
program uses the standard statistical methods which are illustrated in any text books of statistics. Student’s
t-test is used when the two data share a common variance while Welch’s t-test is used when the variances of
the two data are different. In the program, some numerical formulas are taken from Crow et al. (1960), Kohari
(1973), and Press et al. (1992). Three files of test data are included in the directory “tmean-src”; one is for
Student’s t-test and other two are for Welch’s t-test.

Cases of common variance for Student’s t-test

The test data file “t-tmean.d” includes weight of eggs before and after a hen was supplied by nutritional sup-
plement (example from Kohari (1973)). To test if there is a weight difference, set the null hypothesis as
[H0: µ1 − µ2 = 0], and carry out the test by typing

tmean t-tmean.d

the following test results are shown on the display.

Test of population means from two scalar samples:
Data file: t-tmean.d, Significance level: 0.0500, Test if: mu1-mu2=0?

Null hypothesis H0; var1=var2 (Equal-Tails Test):
F[5,9,0.0250] var2/var1 p

4.4844 1.0773 0.433
H0 was NOT REJECTED, proceed to Student’s t-test supposing common variance.

Null hypothesis H0; mu1-mu2=0 when var1=var2 (Equal-Tails Test):
H0 was NOT REJECTED.
tc[14,0.0250] t p

2.1448 -1.1572 0.1333
Sample means:
Sample N Mean Stdev Variance

1 10 70.200 1.9810 3.9244
2 6 71.400 2.0562 4.2280

To save the results to a file use the Unix’s re-direction as below.

tmean t-tmean.d > result.txt

In the first step of the test, common variance was tested by F-test using F-distribution. Because the null hypoth-
esis of the common variance was not rejected, Student’s t-test was carried out in the second step.

As the null hypothesis H0, µ1 = µ2, was not rejected in the above test, you cannot say anything about the
difference of µ1 and µ2. Probably the number of data is too small. Nevertheless, if the manufacturer of the
supplement claims that the supplement increases the weight of eggs by 4 g or more, then, using “-D” option,
set the null hypothesis as [H0: µ1 − µ2 = −4] (negative value is because µ2 − µ1 = 4 is supposed), and carry
out the test by typing

tmean -d-4 t-tmean.d

the results of this test are the following.

Test of population means from two scalar samples:
Data file: t-tmean.d, Significance level: 0.0500, Test if: mu1-mu2=-4?

Null hypothesis H0; var1=var2 (Equal-Tails Test):
F[5,9,0.0250] var2/var1 p
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4.4844 1.0773 0.433
H0 was NOT REJECTED, proceed to Student’s t-test supposing common variance.

Null hypothesis H0; mu1-mu2=-4 when var1=var2 (Equal-Tails Test):
H0 was REJECTED (NOT mu1-mu2=-4).
tc[14,0.0250] t p

2.1448 2.7000 0.0086
Sample means:
Sample N Mean Stdev Variance

1 10 70.200 1.9810 3.9244
2 6 71.400 2.0562 4.2280

As H0 was rejected, we conclude that the manufacturer’s claim is a fake.

Cases of different variances for Welch’s t-test

“t-tmean2.d” and “t-tmean3.d” contain two random data of Gauss distribution in which the means and variances
are different. To carry out the test to “t-tmean2.d”, type as

tmean t-tmean2.d

and the following results are displayed.

Test of population means from two scalar samples:
Data file: t-tmean2.d, Significance level: 0.0500, Test if: mu1-mu2=0?

Null hypothesis H0; var1=var2 (Equal-Tails Test):
F[6,9,0.0250] var1/var2 p

4.3197 4.3875 0.024
H0 was REJECTED, proceed to Welch’s t-test when different variances.

Null hypothesis H0; mu1-mu2=0 when unequal variances (Equal-Tails Test):
H0 was NOT REJECTED.
tc[7.93,0.0250] t p

2.3094 1.3477 0.1075
Sample means:
Sample N Mean Stdev Variance

1 7 72.067 16.445 270.43
2 10 63.047 7.8509 61.637

Note that Welch’s t-test was called in the program because the variances of the two data sets are different. In
spite of quite different means, the null hypothesis H0, µ1 = µ2, was not rejected. This is because the variances
are too large. Using the test data file “t-tmean3.d”, the test will reject the null hypothesis of µ1 = µ2.

4



2.2 Test of a common mean direction: tmeandir

“tmeandir” tests whether two or more groups of unit vectors, distributed in the Fisher distribution, share a
common mean direction. It is mainly used for the reversals test in paleomagnetism. The algorithm of the
program and some of the numerical functions are based on McFadden & Lowes (1981), McFadden (1982),
Fisher et al. (1987), McFadden & McElhinny (1990), and Press et al. (1992). There are four test data files in
directory “tmeandir-src” which are named as “t-tmeandir#.d” where # is one of 1–4.

Only one datum in group 2

“t-tmeandir1.d” includes only one datum in group 2, and this single datum is tested whether it is from the same
population of group 1. Test of an outlier is also made. To carry out the test, type as

tmeandir t-tmeandir1.d

and the following results are shown to the display (to save them to a file, use Unix’s redirection).

Data file:
t-tmeandir1.d

Case:
two groups (1 DATUM ONLY in 2nd group, p = 0.050)

Null hypothesis H0; single group2 direction is from common mean group1:
F[2,10,0.050] G p gammc gamm0

4.1028 4.0651 0.051 27.3 27.2
H0 was NOT REJECTED (POSITIVE reversal test).

CLASS: INDETERMINATEi
Test of outlier for the group2 single direction:
gammc-out gamm0

39.4 27.2
NOT OUTLIER.

Group & total means:
grp n incr decr R k a95
1 6 51.0 351.2 5.8838 43.027 10.3
2 1 25.7 4.3 1.0000 -1.000 -1.0
T 7 47.5 353.7 6.7887 28.390 11.5

Single datum is not inconsistent with group 1, and not an outlier. Note that the difference angle γ0 of 27.2◦ is
only slightly smaller than the critical angle γc of 27.3◦. Hence, if the significance level of 0.1 is assigned with
“-P” option as

tmeandir -p0.1 t-tmeandir1.d

the null hypothesis is rejected and the negative reversal test is concluded as the following.

Data file:
t-tmeandir1.d

Case:
two groups (1 DATUM ONLY in 2nd group, p = 0.100)

Null hypothesis H0; single group2 direction is from common mean group1:
F[2,10,0.100] G p gammc gamm0

2.9245 4.0651 0.051 23.0 27.2
H0 was REJECTED (NEGATIVE reversal test).

Test of outlier for the group2 single direction:
gammc-out gamm0

34.8 27.2
NOT OUTLIER.
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Group & total means:
grp n incr decr R k a95
1 6 51.0 351.2 5.8838 43.027 10.3
2 1 25.7 4.3 1.0000 -1.000 -1.0
T 7 47.5 353.7 6.7887 28.390 11.5

The outlier test, however, still concludes that the single group2 direction is not an outlier with the significance
level of 10%.

Two groups of normal directions

“t-tmeandir2.d” includes typical data of two groups in which the directional data are all normal. To carry out
the test, type as

tmeandir t-tmeandir2.d

and we obtain the following results.

Data file:
t-tmeandir2.d

Case:
two groups (significance level = 0.050)

Null hypothesis H0; kappa1 = kappa2 (Equal-Tails Test):
F[10,10,0.0250] k1/k2 p

3.7168 1.6204 0.229
H0 was NOT REJECTED, proceed with test supposing common kappa.

Null hypothesis H0; common true mean when kappa1 = kappa2:
F[2,20,0.050] f p gammc gamm0

3.4928 5.9423 0.009 7.9 10.3
H0 was REJECTED (NEGATIVE reversal test).

Group & total means:
grp n incr decr R k a95
1 6 50.5 7.6 5.9694 163.576 5.3
2 6 48.5 352.1 5.9505 100.950 6.7
T 12 49.7 359.7 11.8722 86.080 4.7

The null hypothesis of the common mean direction was rejected, i.e. the result was a negative reversals test.

Reversed data in group 2

“t-tmeandir3.d” is the case in which group 2 data are the original reversed directions. In such a case “-R” option
is used as

tmeandir -r t-tmeandir3.d

and we obtain the results below.

Data file:
t-tmeandir3.d

Case:
two groups (significance level = 0.050)

Null hypothesis H0; kappa1 = kappa2 (Equal-Tails Test):
F[10,10,0.0250] k2/k1 p

3.7168 4.9632 0.009
H0 was REJECTED. Simulation follows when kappa1 != kappa2.

Test by simulation (ni=2500) -- Null hypothesis H0; common true mean:
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Vc(p=0.050) V0 gammc gamm0
5.8998 2.0069 12.4 7.3

H0 was NOT REJECTED (POSITIVE reversal test).
CLASS: C

Group & total means (2nd group inverted):
grp n incr decr R k a95
1 6 51.3 355.6 5.8062 25.800 13.4
2 6 48.6 6.1 5.9610 128.052 5.9
T 12 50.1 1.0 11.7436 42.898 6.7

As the null hypothesis of a common kappa was rejected, computer simulation was used to test the common
mean direction. Iteration was 2500 times but it can be changed by option “-N”. The reversals test was positive,
but classified to level C. Note that in the summary of the means, only the inverted one is shown for group 2.

Three groups

“t-meandir4.d” includes 3 groups. To test whether the three groups of directions are independent, type as

tmeandir t-tmeandir4.d

and the results are below.

Data file:
t-tmeandir4.d

Case:
multi groups (M=3, significance level = 0.050)

Null hypothesis H0: common kappa:
Chi2[2,0.050] G p

5.9915 1.0643 0.587
H0 was NOT REJECTED, but a group with less than 5 data exists!
Simulation follows supposing common kappa.

Test by simulation (ni=2500) -- Null hypothesis H0; common true mean:
Vc(p=0.050) V0

9.5039 17.2254
H0 was REJECTED (NOT common mean).

Group & total means:
grp n incr decr R k a95
1 6 48.7 0.8 5.9418 85.929 7.3
2 6 57.9 12.2 5.9061 53.222 9.3
3 4 61.6 355.4 3.9727 109.946 8.8
T 16 55.5 3.6 15.7180 53.184 5.1

As the null hypothesis was rejected, three groups are independent. Note that computer simulation was made
because data number of group 3 was less than 5.
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3 Miscellaneous programs for paleomagnetism

3.1 Simple calculator for paleomagnetism: pcalc

Paleomagnetic measurement data are usually stored in a data file. To analyze them, we let a certain program
read them and obtain the results which are output to another file (or a printout). However, we often need to do
manual calculations. For such a case, “pcalc” provides a utility in which several miscellaneous calculations are
available as a simple calculator.

The interactive calculator starts by typing “pcalc” with “-A” option which stands for “assorted”. When table
of items of calculation is displayed, type the item number which you want to do. Once you enter the level of
each calculation, put necessary data manually. To end input of data, type “Return (Enter)” key. To return to the
upper level, type “Q”. In some calculations which reads more than one datum, the number of input data N is
limited to N <= 50 (when input from a file, N is limitless).

Fisher statistics

By selecting “Item 7” (Flds → Mean Fld), you can calculate a mean direction from several data using Fisher
statistics. The following example illustrates a case of eight remanence directions.

pcalc -a
Miscellaneous Calculations in Paleomagnetism V3.7
1: X,Y,Z -> M,I,D 2: M,I,D -> X,Y,Z
3: Field -> VGP 4: VGP -> Field
5: F,I -> VDM 6: F,Lat -> VADM
7: Flds -> Mean Fld 8: VGPs -> Mean VGP
9: I only -> Mean I A: Lat,Lon -> IGRF
B: Bingham statistics of Flds or VGPs
C: Circle fitting of X-Y data points

(Q to quit) 7
Input data (N<=50): (Rtn--end, Q--cancel)
Slat,Slon? (Rtn to skip) 35.838 137.544
I,D_1? 32.9 16.1
I,D_2? 27.7 15.9
I,D_3? 36.2 49.4
I,D_4? 29.8 22.1
I,D_5? 20.5 6.8
I,D_6? 30.5 12.6
I,D_7? 29.4 16.0
I,D_8? 36.0 19.2
I,D_9?
i I D dev
1 32.90 16.10 3.33
2 27.70 15.90 4.33
3 36.20 49.40 25.58
4 29.80 22.10 2.70
5 20.50 6.80 15.27
6 30.50 12.60 5.72
7 29.40 16.00 3.18
8 36.00 19.20 5.10
Slat Slon n I D R k a95 Plat Plon dp dm asd
35.84 137.54 8 30.90 19.24 7.851 46.84 8.18 64.31 270.81 5.10 9.13 11.91
Exclude one? (N or Rtn/Y)
Re-run? (N or Rtn/Y)

After the results are displayed, the program asks you if you wish to exclude one datum from the statistics.
However, this function is not to encourage you to eliminate an inconvenient datum arbitrary. If you find a
strange datum which might be an outlier, you should carry out the statistical test of outlier (McFadden, 1982)
which is available by “tmeandir”, and try to find physical reasons to the outlier.

8



Bingham statistics

The above input data used for “Item 7” (Flds → Mean Fld) are quite elongated as shown in the figure below,
possibly due to failed elimination of the secondary remanence components.

N

W E

Selecting “Item B” (Bingham statistics of Flds or VGPs) and supplying the same data, the following results
are displayed together with Fisher statistics at the last (first a cautionary message appears, but just hit “Return
(Enter)” to continue).

Bingham statistics:
n k1 k2 tau1 tau2 tau3
8 -214.49 -15.43 0.02 0.27 7.71
I3(Lat3) D3(Lon3) I2(Lat2) D2(Lon2) I1(Lat1) D1(Lon1)

30.83 18.95 21.51 122.56 50.93 241.61
a31 a32 a21 Xu Xcp Xcg
2.44 9.25 14.04 35.83 24.93 57.41

Fisher statistics:
n Im(Latm) Dm(Lonm) R k a95 Asd
8 30.90 19.24 7.85 46.84 8.18 11.91

Among many parameters displayed, the direction of eigenvector t3 is shown under the head “I3(Lat3) D3(Lon3)”.
This is in excellent agreement with the mean direction of Fisher statistics which is obtained by “Item 7”(or,
that is shown under the head “Im(Latm) Dm(Lonm)”). However, it is noticed that there is a large elongation in
the 95% confidence region as is known from a large difference of α31 and α32 which are shown under the head
“a31 a32”.

As the Bingham distribution is dependent on sin2 θ, you can analyze the combined data of normal and
reversed directions. As a demonstration, try to recalculate the statistics with above data half of which are
inverted by 180◦. You will obtain identical results of Bingham statistics while Fisher statistics gives extremely
small k and too large α95 to be determined.

The reason of displaying a cautionary message when “Item B” is selected is that the routine of the maximum
likelihood estimate (MLE) of k1 and k2 sometimes fails to converge, especially for small number of extremely
elongated data. If the process seems to be frozen, terminate it by Ctrl+C or kill command. Nevertheless, for
typical paleomagnetic data with moderate dispersion, the process should easily converge.

Data input from a file: inclination only statistics

“pcalc” also reads input data from a file by using options other than “-A”. In this case, the number N of input
data is limitless but the interactive function such as excluding an outlier datum is not available. Hence, when
using “pcalc” with options to read a data file, you can redirect the results to a file (but do not use redirection
with option “-A”!). The following example of option “-I” shows inclination only statistics of the test data file
“t-inc.d”. “-L” option is also used to list the input data.

pcalc -i -l t-inc.d > result.txt
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The content of the output file “result.txt” is as the following.

Inclination only statistics of t-inc.d:
Arith. mean: Im= 68.78, km= 36.42
MLE estimations:
n Im km a95 iteration
9 71.85 32.45 9.17 43
Input data:
i I dev
1 66.10 -5.75
2 68.70 -3.15
3 70.10 -1.75
4 82.10 10.25
5 79.50 7.65
6 73.00 1.15
7 69.30 -2.55
8 58.80 -13.05
9 51.40 -20.45

In this case, convergence of MLE estimations was quite rapid after 43 iterations. Depending on the data,
however, the convergence might be bad and in that case a cautionary message is displayed.

Data input from a file: Bingham statistics

Three of nine test data files contained in the source directory “pcalc-src” are for Bingham statistics. “t-bingB.d”
and “t-bingF.d” contain 200 directions which are generated by random generator of Bingham and Fisher distri-
butions, respectively (figures below). “t-bingP.d” contains 18 data of girdle-like plane distribution.

  2019 Sep 14  
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30

60

Bingham distribution (k1=−25, k2=−10, N=200)

0

180

270 90

0

30

60

Fisher distribution (k=30, N=200)

As an example of Bingham statistics from the test data file “t-bingB.d”, type as

pcalc -b t-bingB.d

After hitting “Return (Enter)” to the cautionary message shown, the following results are displayed.
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Input file of Bingham statistics: t-bingB.d
Bingham statistics:
n k1 k2 tau1 tau2 tau3

200 -29.79 -10.35 3.42 10.28 186.29
I3(Lat3) D3(Lon3) I2(Lat2) D2(Lon2) I1(Lat1) D1(Lon1)

88.75 171.94 -0.14 88.39 1.25 358.40
a31 a32 a21 Xu Xcp Xcg
1.34 2.32 8.59 805.87 66.66 911.16

Fisher statistics:
n Im(Latm) Dm(Lonm) R k a95 Asd

200 88.73 171.89 192.82 27.72 1.93 15.51

In the results shown above, note that α32 is much larger than α31, indicating elongation along the t2 direction.
This is in good agreement with the shape of distribution shown in the left figure. It is also noted that the mean
direction of Fisher statistics is in complete agreement with t3 direction.

It is also easy to obtain the statistics from “t-bingF.d” whose data distribution is shown in the right figure.
However, for “t-bingP.d” which contains 18 girdle-like plane data, the program takes quite a long CPU time
(four seconds elapsed at Intel Core i-7 machine). During iteration, the display shows a message with increasing
number like

** Wait 32 **

and convergence is attained after ∼80. If the number stops at a certain point, the process must be frozen. In
such a case terminate the process by Ctrl+C or kill command.

Data input from a file: circle fitting

The last examples are circle fittings of 2-dimensional X-Y data (N ≥ 3) by the method of Taubin (1991).
Using a test data file “t-circ.d”, type as

pcalc -c t-circ.d

The results of circle fitting are as the following.

Input file of circle fitting: t-circ.d
N X0 Y0 R k SSE
11 -4.687e-05 0.009647 1.035 0.9663 0.03994

where (X0, Y0) and R are the circle center and the radius, respectively. k is a measure of the curvature extended
from Paterson (2011) defined as,

k =



1/R, if X̄ < X0 and Ȳ < Y0 (concave up),
1/R, if X̄ > X0 and Ȳ < Y0 (concave up),

−1/R, if X̄ > X0 and Ȳ > Y0 (concave down),
−1/R, if X̄ < X0 and Ȳ > Y0 (concave down),

0, if X̄ = X0 and Ȳ = Y0,

where (X̄, Ȳ ) is the centroid of the data. k was introduced to evaluate Thellier’s paleointensity results. Hence,
ignore it when general data are fitted to a circle as this example. SSE is the sum of the squares of the error,
defined as,

SSE =
N∑
i=1

(√
(Xi −X0)2 + (Yi − Y0)2 −R

)2

.

Figure next page shows the fitted circle together with the data. Such a figure can be drawn by using the program
“pcirc” which is contained in another archive “pmagm302.tar.gz”.
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Circle Fitting of t−circ.d

N=11 X0=−4.687e−05 Y0=0.009647

R=1.035 k=0.9663 SSE=0.03994

Another test data file “t-circ2.d” is provided to show a cautionary example. This file contains only four data
points (1.1, 0), (0, 0.9), (-1.1, 0), (0, -0.9). The result from this file is as the following.

Input file of circle fitting: t-circ2.d
N X0 Y0 R k SSE
4 0.000 0.000 1.005 0.000 0.04010

Note that the radius R of the fitted circle is slightly larger than the optimal value of 1. This is because the algo-
rithm used by pcirc is to minimize the sum of the squares of “algebraic” distance r2i −R2 not the “geometric”
distance ri−R, where ri is the distance of a data point from the center. It is known that the algebraic method is
less accurate than the geometric one. Nevertheless, the former is simpler and practical due to its fast calculation
speed.
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3.2 Core orientation by a sun compass: sunpmag

Orientation system and bedding attitude

The following figures illustrate the systems of core orientation and bedding attitude, which are used throughout
the paleomagnetic programs including those in another archive “pmagm302.tar.gz”.

In the orientation system (left figure), x-axis is in the horizontal plane. Azimuth of x-axis is measured
clockwise from the north. Looking toward +x direction, y and z-axes are rotated clockwise by the angle plunge.
This orientation system is applicable ONLY to the orientation device supplied by Natsuhara Giken.

For the bedding attitude and its tilt correction (right figure), a standard system is used. Bedding strike
is measured clockwise from the north. Looking toward the measured strike direction, dip angle is positive
when the bedding plane is inclined clockwise. Note that the bedding plane of (strike, dip) is equivalent to
(strike+ 180◦,−dip).

plunge

azimuth

MARKER

Vertical

True North

x

y

z

Magnetic North

mag

DIP

STRIKE

Horizontal plane

Fall line

North

Bedding plane

Azimuth of the core marker

“sunpmag” calculates azimuth of the marker of the sample which was collected with the orientation device
described above. To convert the remanence vector from core coordinates to geographic coordinates, we need
to know the angles plunge and azimuth. However, it is difficult to measure azimuth in the field because the true
north is unknown. Hence, we measure one to three angles; mag, sun, and ref as shown in the figure below.

W

S

E

N

MARKER

mag

SUN

REF.

sun

ref

MN

azimuth

mag is the angle of the marker measured COUNTERCLOCKWISE from the magnetic north. sun is the sun’s
direction (NOT its shadow) measured clockwise from the marker. ref is the direction of a reference measured
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clockwise from the marker. Another angle we need to know is the magnetic declination at the site. If the decli-
nation is available, it should be assigned as one of the site information such as the site latitude and longitude. If
not available, the declination can be omitted, and in that case, “sunpmag” calculates its IGRF or DGRF value
corresponding to the date and site locality with altitude 0 km.

The astronomical algorithm of calculating the sun’s direction is taken from Yallop & Hohenkerk (2007) in
which the claimed error is ∼0.6 minutes for the time span from 2000 BC to AD 2200. Declination is calculated
by using the Gauss coefficients from IGRF-14 (IGRF maintained by IAGA, 2025) with the geodetic system
WGS84 up to the maximum n of 13 (AD 2000 and later) or 10 (before AD 2000).

Input file format

The format of the input data file is as the following.

# lines beginning with ‘‘#’’ or ‘‘%’’, or blank line are ignored
$$ lat lon tzone [dec]
$ year month day [ref_azim]
core1-1 plun mag
core1-2 plun mag sun h m s
core1-3 plun mag ref
core1-4 plun mag sun h m s ref

.

.
$ year month day [ref_azim]
core2-1 plun mag sun h m s

.

.
$$ lat lon tzone [dec]

.

.

The line with “$$” at the beginning is the locality information. The line with “$” at the beginning indicates that
the core orientation data follow from the next line. In the above explanation of the format, four cases of angle
measurements are shown. The line of core1-1 shows the case of plunge and mag only. core1-2 shows the case
of plunge, mag, sun, and time information. core1-3 is the case of plunge, mag, and ref. core1-4 is the case of all
measurements. Second “$” line indicates the beginning of another site under the same location. Second “$$”
line begins another locality. You can include lines with “$” or “$$” as many as you need. Simple descriptions
of the input data are summarized as the following.

lat,lon : latitude and longitude in decimal
tzone : east positive time difference (ex., +9 for Japan)
dec : optional local declination (when omitted, the IGRF-14 value is used with

n=13 (yr>=2000) or n=10 (yr<2000) at 0 km height WGS-84 geodetic system.)
plun : plunge of the core (not used in the azimuth calculation)
ref azim : optional reference azimuth (eastward from the true north)
mag : marker angle measured counterclockwise from the magnetic north
sun : sun angle measured clockwise from a marker (not the sun’s shadow)
ref : reference angle measured clockwise from a marker

To use “sunpmag” type as,

sunpmag data-file

The results are printed out to stdout (display). To save them to a file, type as,

sunpmag data-file > out-file
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To show the help message, type as,

sunpmag -h

Test data file “t-sunpmag.d” and its calculation result “t-sunpmag-result.txt” are included in the directory
“pmagt402/sunpmag-src”.

Example of output

An example of output from the test data file “t-sunpmag.d” is shown in the following, which is obtained from
the orientation data taken in New Zealand in 1990. “Sld” (Standard longitude difference) at the first line is the
time difference from Greenwich, which is +13 hours in New Zealand.

Lat Lon Sld Dec(1990.175)
-38.659 176.031 13.0 20.4

Year Mon Day Ref_azm
1990 3 5 105.0

Core Dip Sazim Mazim dltMS Razim dltMR dltRS Mag Sun Hr Mn Sc Ref
NT56-1 73.5 92.1 90.9 -1.2 * * * 289.5 252.8 14 0 40 *
NT56-2 77.3 95.4 94.5 -1.0 * * * 285.9 247.8 14 4 25 *
NT56-3 77.9 93.7 91.6 -2.1 * * * 288.8 248.9 14 5 50 *
NT56-4 76.5 96.1 95.1 -1.1 * * * 285.3 245.8 14 7 25 *
NT56-5 69.3 70.8 69.4 -1.4 68.6 0.8 -2.2 311.0 262.8 14 27 20 36.4
NT56-6 71.8 * 70.7 * 70.1 0.6 * 309.7 * * * * 34.9
NT56-7 82.8 * 82.8 * 82.0 0.8 * 297.6 * * * * 23.0
NT56-8 86.8 * 91.9 * 90.2 1.7 * 288.5 * * * * 14.8

As input of local declination was omitted, the declination was calculated by interpolating between DGRF1990
and DGRF1995 and its value 20.4 is shown under “Dec(1990.175)” in which fraction 0.175 corresponds to
March 5. Reference azimuth 105.0 under “Ref azim” is the value read from the topographic map. For each
line of the core data, the figure under “Dip” is the same as the input datum plunge. Figures under “Sazim”,
“Mazim”, and “Razim” are the azimuth values based on the measured angles sun, mag, and ref, respectively.
Those under “dltMS” etc. are the differences between the calculated values of azimuth. The differences are
quite small, indicating the small local magnetic anomaly and accurate measurements of the angles. Those under
“Mag”, “Sun”, “Hr”, etc. are the input data.
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3.3 Main field elements from IGRF-14: igrf

“igrf” calculates elements of the geomagnetic main field at a specified site locality and date by using the
Gauss coefficients from IGRF-14 (IGRF maintained by IAGA, 2025). “pcalc” and “sunpmag” also include this
function with limited conditions while “igrf” provides calculations with the WGS84 geodetic system or the
geocentric coordinate system at a certain altitude or a radius from the earth’s center. The highest term included
is n=13 for the year AD 2000 or later and n=10 for the years before AD 2000. Linear interpolation is used to
add secular variations for the time between epocks and linear extrapolation for beyond 2025.

Interactive calculation

Starting the program by typing “igrf”, the next message appears.

igrf
Main field from IGRF-14 with n=13 (yr>=2000) or n=10 (yr<2000)
Rtn (Enter) to continue,
U for usage,
H for help message,
Q to quit.

By typing Return, the interactive program begins. In default, geodetic system is adopted and date and site
location formats are in decimal. In the next example of year 2024.5, Gauss coefficients are linearly interpolated
between those of DGRF2020 and IGRF2025.

** Geodetic system adopted. **
Decimal year? (Q - quit) 2024.5
Altitude in km? (-10 ˜ 500 km)
(Rtn - 0 km, Q - quit)
Decimal Lat, Lon? (Q - quit) 33.5 133.5

Year altitude
2024.500 0.0
Latitude Longitude
33.50 133.50

X Y Z F I D
31417 -4314 35139 47332 47.93 -7.82
Decimal Lat, Lon? (Q - quit)

Options -Y and -D set the formats of “year, month, day” for the date and “degrees, minutes” for the site,
respectively. Option -C sets the geocentric coordinate system. An example of these input formats is as the
following.

** Geocentric system adopted. **
Year,Month,Day? (Q - quit) 2012 9 17
Geocentric distance in km? (3485˜10000 km)
(Rtn - 6371.2 km, Q - quit) 6400
Lat_deg, Lat_min, Lon_deg, Lon_min? (Q - quit)
(Set "negative" only to "deg" for south & west values)
64 26 -22 51

Year Mo Dy radius
2012 9 17 6400.0
Lat-d Lat-m Lon-d Lon-m

64 26 -22 51
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X Y Z F I D
12028 -3454 50087 51626 75.97 -16.02
Lat_deg, Lat_min, Lon_deg, Lon_min? (Q - quit)
(Set "negative" only to "deg" for south & west values)

Data input from a file

With -F option, “igrf” reads dates and site locations from a file. In this case, the coordinate system is limited
to geodetic and the format of the dates and site locations are automatically interpreted. The following is the
results from the test data file “t-igrf.d”.

igrf -f t-igrf.d

** IGRF elements from t-igrf.d **
** Geodetic system adopted. **

Year Mo Dy altitude
2025 5 15 0.2
Lat-d Lat-m Lon-d Lon-m

33 24 -133 36
X Y Z F I D

24004 5468 35179 42938 55.02 12.83
Latitude Longitude
33.40 -133.60

X Y Z F I D
24004 5468 35179 42938 55.02 12.83

Year altitude
1991.330 0.5
Latitude Longitude
-20.20 145.50

X Y Z F I D
31878 4301 -38672 50301 -50.25 7.68

Year Mo Dy altitude
2011 12 1 0.0
Lat-d Lat-m Lon-d Lon-m
86 26 162 50
X Y Z F I D
130 463 57229 57231 89.52 74.30

Year altitude
2016.167 0.0
Latitude Longitude
-90.00 0.00

X Y Z F I D

* * -52272 54887 -72.24 *
(At the poles X, Y, D are indefinite. H= 16739)
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3.4 Convert Natsuhara SPIN2 files by sp2m & sp2m

The programs “sp2m” and “ sp2m” transfer the Natsuhara’s SPIN2 measurements files to those for “pdemag”,
“pdirec”, and “pinte”. It is supposed that the input file format is that of Natsuhara Giken SPINNER 2000, which
I used at the Marine Core Center of Kochi University from 2012 to 2015.

If error of reading a file happens, there would be two reasons, (1) the file format is different from that
of SPINNER 2000, and (2) sample name or step data contains SPACE. Concerning to the latter problem, as
“sp2m” and “ sp2m” treat the characters SPACE and ” (quotation mark) as delimiters, any words including
SPACE or ” are separated. For example, the program reads “TH 1” as two words “TH” and “1”. So “TH-1”
or “TH 1” should be used in this case. Test files “*.txt” and “ *.txt” are included in the source directories
“pmagt402/sp2m-src” and “pmagt402/ sp2m-src”.

Case of new format file (*.txt): sp2m

“sp2m” takes the bedding attitude corrected directions in default. Using the three test files which contain
measurements of thermal demagnetization, type as

sp2m thd1.txt thd2.txt thd3.txt > thd1-3.dmg

Content of the transferred file “thd1-3.dmg” which can be analyzed by “pdemag” is as the following.

# BED CORRECTED
$ thd1.txt 0.0 0.0 0.0 0.0
20 6.589e-02 72.0 340.7

200 6.475e-02 71.7 342.9
300 6.226e-02 72.1 340.0
400 5.732e-02 70.4 345.6
450 5.254e-02 71.9 342.5

...

...
$ thd2.txt 0.0 0.0 0.0 0.0
20 6.609e-02 55.4 344.0

200 6.538e-02 55.6 341.3
...
...

$ thd3.txt 0.0 0.0 0.0 0.0
20 2.651e-01 67.6 318.7

...

Using the test file “nrm.txt”, to transfer the data to those with the format for “pdirec”, type with “-N” option,

sp2m -n nrm.txt > nrm.drc

As shown in the following content of “nrm.drc”, directions in all coordinates are taken with “-N” option. This
file should be analyzed by “pdirec”.

$ nrm.txt
-1-1 71.3 53.1 42.2 33.6 40.1 37.5 -1.0 A 1 1.721e-02
-2-1 70.7 52.6 48.2 59.5 44.3 62.8 -1.0 A 1 1.685e-02
-3-1 55.8 74.9 40.0 26.9 38.4 30.8 -1.0 A 1 1.099e-02
-4-1 70.0 68.2 38.2 75.6 33.6 77.0 -1.0 A 1 1.628e-02
-5-1 38.4 59.2 44.1 96.8 39.1 97.0 -1.0 A 1 1.104e-02
-6-1 40.6 69.5 45.6 97.1 40.6 97.4 -1.0 A 1 1.244e-02

...

...
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Case of old format file ( *.txt): sp2m

Concerning to the measurements data from Natsuhara’s SPINNER 2000, it is recommended to use the file of
old format “ *.txt” because it contains the information of orientation and bedding attitude which user inputted.
In default, “ sp2m” takes only the data in core coordinates. Data of orientation and bedding are taken ONLY
ONCE from the fist line (usually the NRM measurement as the first step). Hence, it is supposed that the next
stage analysis by “pdemag” will calculate the in situ or tilt corrected directions. With “-N” option, “ sp2m” also
takes the core coordinates data only. However, the orientation and bedding data are taken from every datum,
and the in situ and tilt corrected directions are calculated. They are printed out to the display in the format for
“pdirec”.

Using the test files of thermal demagnetization, type as

_sp2m _thd1.txt _thd2.txt _thd3.txt > _thd1-3.dmg

Note that the data of orientation and bedding attitude are taken into “ thd1-3.dmg” as below.

$ _thd1.txt 132.6 75.0 10.0 5.0
20 6.589e-02 19.8 111.3

200 6.475e-02 20.6 111.3
300 6.226e-02 19.6 111.4
400 5.732e-02 22.0 112.2
450 5.253e-02 20.4 111.2

...

...
$ _thd2.txt 47.4 76.8 10.0 5.0
20 6.609e-02 47.0 72.0

200 6.538e-02 47.8 73.9
...
...

$ _thd3.txt 62.9 89.1 10.0 5.0
20 2.652e-01 25.6 100.0

...

To test “-N” option by using “ nrm.txt”, type as

_sp2m -n _nrm.txt > _nrm.drc

With “-N” option, the results are the same with the case of “sp2m”.

$ _nrm.txt
-1-1 71.3 53.1 42.2 33.6 40.1 37.5 -1.0 A 1 1.721e-02
-2-1 70.7 52.6 48.2 59.5 44.3 62.8 -1.0 A 1 1.685e-02
-3-1 55.8 74.9 40.0 26.9 38.4 30.8 -1.0 A 1 1.099e-02
-4-1 70.0 68.2 38.2 75.6 33.6 77.0 -1.0 A 1 1.628e-02
-5-1 38.4 59.2 44.1 96.8 39.1 97.0 -1.0 A 1 1.104e-02
-6-1 40.6 69.5 45.6 97.1 40.6 97.4 -1.0 A 1 1.244e-02

...

...
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3.5 Summary of formulas

3.5.1 Core orientation and bedding tilt correction

To convert the remanence direction in core coordinates (XC , YC , ZC) to in situ direction (XS , YS , ZS), it is
easier to consider in terms of rotation of the geographic coordinate system to core system by azimuth A and
plunge P . The formula for the device of Natsuhara Giken is given as below. XS

YS
ZS

 =

 cosA − sinA 0
sinA cosA 0
0 0 1


 1 0 0

0 cosP − sinP
0 sinP cosP


 XC

YC
ZC


=

 cosA − sinA cosP sinA sinP
sinA cosA cosP − cosA sinP
0 sinP cosP


 XC

YC
ZC


To carry out tilt correction of the bedding attitude, strike α and dip β, it is easier to consider in terms of rotation
of a vector. First rotate the vector by (−α,−β) and second rotate it by (α, 0). Hence, the formula of tilt
corrected direction (XT , YT , ZT ) is given as the following. XT

YT
ZT

 =

 cosα − sinα 0
sinα cosα 0
0 0 1


 1 0 0

0 cosβ sinβ
0 − sinβ cosβ


 cosα sinα 0

− sinα cosα 0
0 0 1


 XS

YS
ZS


=

 cosα − sinα 0
sinα cosα 0
0 0 1


 cosα sinα 0

− sinα cosβ cosα cosβ sinβ
sinα sinβ − cosα sinβ cosβ


 XS

YS
ZS


3.5.2 Field direction to pole position

Field direction (I,D) at a site (λS , ϕS) is transferred to a VGP at (λP , ϕP ) by using the spherical trigonometry
formulas.

tan p = 2 cot I,

sinλP = sinλS cos p+ cosλS sin p cosD,

sin(ϕP − ϕS) = sin p sinD/ cosλP .

Let the solution of the last equation be β, ϕP is given by{
ϕP = ϕS + β, when cos p ≥ sinλS sinλP

ϕP = ϕS + 180− β. when cos p < sinλS sinλP

3.5.3 Pole to field direction

Given a VGP position (λP , ϕP ), the field direction (I,D) observed at a site (λS , ϕS) is converse of the previous
case and given by the following formulas.

cos p = sinλS sinλP + cosλS cosλP cos(ϕP − ϕS),

tan I = 2 cot p,

cosD = (sinλP − sinλS cos p)/(cosλS sin p).

Using the solution δ (0 ≤ δ ≤ 180) of the last equation, D is given by the following formulas.{
D = δ, when 0 ≤ ϕP − ϕS ≤ 180
D = 360− δ. when 180 < ϕP − ϕS < 360
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When the observation site is on the north or the south poles, ϕS and D are indeterminate. Nevertheless, “pcalc”
defines D at the pole as the converged value of declination when the site is infinitesimally neared to the pole
along the line of longitude ϕS . Hence, D is given at the poles as,{

D = 180− (ϕP − ϕS), when λS = 90
D = ϕP − ϕS . when λS = −90

Another method to estimate the field direction from a VGP, which “pcalc” adopted, is to use the relation of
the geocentric dipole and the degree 1 Gauss coefficients. Considering that a VGP is actually a south pole, we
have to use an inverted pole position (−λP , ϕP − 180) to estimate the Gauss coefficients as

g01 =
µ0M

4πa3
sin(−λP ) = −µ0M

4πa3
sinλP ,

g11 =
µ0M

4πa3
cos(−λP ) cos(ϕP − π) = −µ0M

4πa3
cosλP cosϕP ,

h11 =
µ0M

4πa3
cos(−λP ) sin(ϕP − π) = −µ0M

4πa3
cosλP sinϕP ,

where µ0, M , and a are permeability of free space, dipole moment, and the earth’s radius, respectively. Using
the geomagnetic potential of degree 1, the field components X , Y , Z (NS, EW, vertical, respectively) are given
by

X = −g01 sin θS + (g11 cosϕS + h11 sinϕS) cos θS ,

Y = g11 sinϕS − h11 cosϕS ,

Z = −2g01 cos θS − 2(g11 cosϕS + h11 sinϕS) sin θS ,

where θS = 90− λS .

3.5.4 VDM and VADM

Supposing that the paleomagnetic field was originated from a geocentric dipole, the dipole moment M is
estimated from a paleointensity F and an inclination I or a paleolatitude λ as

M =
2πa3F

µ0

√
1 + 3 cos2 I,

=
4πa3F

µ0

√
1 + 3 sin2 λ

.

The former is called a virtual dipole moment (VDM) which is estimated from the observed F and I . In the
latter case, if λ is set to the present-day latitude λS of the observation site, it is called a virtual axial dipole
moment (VADM).

3.5.5 Fisher statistics

In the statistics of Fisher (1953), the best estimate of the true mean direction of N paleodirections (Ii, Di) is
given by the vector sum R as

RX =
N∑
i=1

cos Ii cosDi,

RY =
N∑
i=1

cos Ii sinDi,

RZ =
N∑
i=1

sin Ii.
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and hence, the mean direction (Im, Dm) is given by

sin Im = RZ/R,

tanDm = RY /RX .

The best estimate k of the precision parameter κ (for κ > 3) is given by

k =
N − 1

N −R
.

The 95% confidence circle α95 around the mean direction is calculated by

cosα95 = 1− N −R

R

[(
1

0.05

) 1
N−1

− 1

]
.

Angular standard deviation S is defined as

S2 =
1

N − 1

N∑
i=1

θ2i ,

where θi is the angular distance of i-th direction from the mean direction.
The mean field direction (Im, Dm) observed at a certain site (λS , ϕS) is transferred to a VGP (λP , ϕP ).

About the equations to obtain the corresponding VGP, refer to the formulas at page 20. 95% confidence circle
around the mean direction is also transferred to the error around the VGP. This error is approximated as the oval
of 95% confidence by using two parameters dp and dm. dp is an error along the great circle passing through
the site and pole and dm is the one perpendicular to the pass. they are given by

dp =
α95

2
(1 + 3 cos2 p) = α95

2

1 + 3 cos2 Im
,

dm = α95
sin p

cos Im
= α95

2√
1 + 3 cos2 Im

.

3.5.6 Bingham statistics

Statistics of Bingham (1974) is suitable to describe elongated distribution on the unit sphere. Here only the
numerical procedure is described based on Onstott (1980) and Tanaka (1999). For a little more detailed expla-
nation see this page (http://www.ne.jp/asahi/paleomagnetism.rock-magnetism/basics/pmag/dist/bingE.html).

Consider N unit vectors, Li = (xi, yi, zi) (i = 1 · · ·N ), which moderately scatter around the mean (Figure
below). First, the following orientation matrix is calculated.

T =


∑N

i=1 x
2
i

∑N
i=1 xiyi

∑N
i=1 xizi∑N

i=1 xiyi
∑N

i=1 y
2
i

∑N
i=1 yizi∑N

i=1 xizi
∑N

i=1 yizi
∑N

i=1 z
2
i

 .

Three eigenvalues of T are designated as τ1, τ2, τ3 in the ascending order (τ1 ≤ τ2 ≤ τ3, τ1 + τ2 + τ3 = N ),
and corresponding eigenvectors as t1, t2, t3. The mean direction is given by t3, and the direction of elongation
of the distribution is indicated by t2. Determination of eigenvalues and eigenvectors are carried out by using
Jacobi’s method described in Press et al. (1992).

Li
θi

t
2

t
1

t
3

ϕi
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Next step is to determine the Bingham’s concentration parameters k1 and k2 (k1 ≤ k2 ≤ 0). The probability
density of the Bingham distribution is given by

b(θ, φ) =
1

4πd(k1, k2)
e(k1 cos

2 φ+k2 sin
2 φ) sin2 θ,

where the normalization constant d(k1, k2) is given by the next integration.

d(k1, k2) =
1

4π

∫ 2π

0

∫ π

0
e(k1 cos

2 φ+k2 sin
2 φ) sin2 θ sin θdθdφ.

Given the N unit vectors Li = (θi, φi) (i = 1 · · ·N ), the maximum likelihood estimates of k1 and k2 are
determined by maximizing the next log-likelihood function,

F = −N log 4π −N log d(k1, k2) + k1τ1 + k2τ2.

Maximizing process is carried out by using Powell’s method of Press et al. (1992) in which the maximum is
sought starting from k1 = k2 = 0 to the negative directions of k1 and k2. At each of iteration, d(k1, k2) is
numerically determined by an integration routine.

Once k1 and k2 are determined, Bingham’s 95% confidence radii around t3, α31 and α32 along t1 and t2
directions, respectively, are given by

α31 = 2.45σ31, α32 = 2.45σ32,

where σij is given by

σ2
ij =

1

2(ki − kj)(τi − τj)
.

Bingham’s test statistics of isotropy χ2
U , polar circular symmetry χ2

CP , and girdle circular symmetry χ2
CG,

are given by

χ2
U = (15/2N)

(
(τ1 −N/3)2 + (τ2 −N/3)2 + (τ3 −N/3)2

)
χ2
CP = (1/2)(τ1 − τ2)(k1 − k2)

χ2
CG = (1/2)(τ2 − τ3)k2.

Each of the null hypotheses of isotropy, polar circular symmetry, and girdle circular symmetry is rejected with
significance level p = 0.05, if each of the following condition is attained.

χ2
U > χ2(ν = 5, p = 0.05) = 11.07

χ2
CP > χ2(ν = 2, p = 0.05) = 5.991

χ2
CG > χ2(ν = 2, p = 0.05) = 5.991.

3.5.7 Inclination only statistics

Statistics of inclination only data was introduced to paleomagnetism in 1960’s to analyze the paleomagnetic
measurements from borecores which usually lack declinations. The first study which can be used as a computer
algorithm was presented by Kono (1980). Among quite a few studies which followed, the method by McFadden
& Reid (1982) has been the most used in the community. However, “pcalc” adopted the recent method of
Arason & Levi (2010). The following are concise introduction to the inclination only statistics.

Using polar coordinates, consider a direction P(θ,ϕ) which is Fisher distributed around the true direction
P0(θ0,ϕ0). Let θ′ and ϕ′ be the polar angle of P from P0 and the azimuthal angle of P around P0, respectively,
as shown in the figure.
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The probability density of P around P0 is given by

f(θ′, ϕ′)dθ′dϕ′ =
κ

4π sinhκ
exp(κ cos θ′) sin θ′dθ′dϕ′.

Using the spherical trigonometry as shown in the figure, variables (θ′, ϕ′) are transferred to (θ, ϕ) by the next
equation,

cos θ′ = cos θ0 cos θ + sin θ0 sin θ cos(ϕ− ϕ0).

Using the next relation,
sin θ′dθ′dϕ′ = sin θdθdϕ,

the probability density is expressed in terms of (θ, ϕ) as

f(θ, ϕ)dθdϕ =
κ

4π sinhκ
exp[κ cos θ0 cos θ + κ sin θ0 sin θ cos(ϕ− ϕ0)] sin θdθdϕ.

Now the problem is to find the probability density of θ when ϕ is not known, which is the marginal distribution
f(θ). Integrating the last equation by ϕ, f(θ) is given by,

f(θ)dθ =
κ

2 sinhκ
exp(κ cos θ0 cos θ)

1

2π

∫ 2π

0
exp[κ sin θ0 sin θ cos(ϕ− ϕ0)]dϕ sin θdθ,

=
κ sin θ

2 sinhκ
exp(κ cos θ0 cos θ)I0(κ sin θ0 sin θ)dθ,

where I0(·) is the modified Bessel function of the first kind of order 0.
When N colatitudes θi (i = 1 · · ·N ) are given, the best estimates of θ0 and κ are obtained by maximizing

the following log-likelihood function

h(θ, κ) = log
N∏
i=1

f(θi),

= log

[(
κ

2 sinhκ

)N N∏
i=1

sin θi exp(κ cos θ0 cos θi)I0(κ sin θ0 sin θi)

]
,

= N log

(
κ

2 sinhκ

)
+

N∑
i=1

log(sin θi) +
N∑
i=1

κ cos θ0 cos θi +
N∑
i=1

log(I0(κ sin θ0 sin θi)).

Differences of the studies published so far are in the methods of approximating the above equation, espe-
cially the Bessel function part. Although I am not in the fields of theory or numerical calculations, I presume
that the most reliable study is Arason & Levi (2010) in which detailed description was presented together with
thorough comparison of the results among the previous studies.
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3.5.8 International Geomagnetic Reference Field

Magnetic potential W of the geomagnetic field of internal origin is represented with the Gauss coefficients gmn
and hmn as

W = a
∞∑
n=1

n∑
m=0

(
a

r

)n+1

Pm
n (cos θ)(gmn cosmϕ+ hmn sinmϕ),

where a is the radius of the earth, (r, θ, ϕ) is an observation point in polar coordinates (r ≥ a), and Pm
n (cos θ)

is quasi-normalized Schmidt function (associated Legendre polynomials). The geomagnetic field vector B at
the observation point is given by

B = −∇W.

Let X , Y , and Z be the northward, eastward, and vertical down components of B, respectively. Noting that X ,
Y , and Z directions are −θ, +ϕ, and −r directions, respectively, the three components are given by

X =
1

r

∂W

∂θ
, Y = − 1

r sin θ

∂W

∂ϕ
, Z =

∂W

∂r
.

Hence, three components of the geomagnetic field at the observation point (r, θ, ϕ) are calculated by

X =
∞∑
n=1

(
a

r

)n+2 n∑
m=0

(gmn cosmϕ+ hmn sinmϕ)
dPm

n (cos θ)

dθ
,

Y =
∞∑
n=1

(
a

r

)n+2 n∑
m=0

(gmn sinmϕ− hmn cosmϕ)
mPm

n (cos θ)

sin θ
,

Z = −
∞∑
n=1

(n+ 1)

(
a

r

)n+2 n∑
m=0

(gmn cosmϕ+ hmn sinmϕ)Pm
n (cos θ).

Programs “igrf”, “sunpmag”, and “pcalc” take the Gauss coefficients for AD 1900–2025 from IAGA’s dataset
IGRF-14 (IGRF maintained by IAGA, 2025) and summation is carried out up to n = 13 for the year AD 2000
and later, or n = 10 for the years before AD 2000.

3.5.9 Geodetic and geocentric coordinate systems

Geomagnetic elements are calculated by using the above mentioned formulas which are defined on the geocen-
tric coordinate system. It is preferable to transfer them to those expressed on the usual geographic (geodetic)
coordinate system. The following summarize the relation of geodetic and geocentric coordinates systems.

Consider the earth of oblate spheroid with semi-axes a, a, and b (a > b) as the figure below.

θ

δθ

P

x

z

b

aO

θc
N

r
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Using the geodetic colatitude θ of an observation point P, distances N and r in the figure are given by

N2 =
a4

a2 sin2 θ + b2 cos2 θ
,

r2 =
a4 sin2 θ + b4 cos2 θ

a2 sin2 θ + b2 cos2 θ
.

Orthogonal coordinates of the point P with altitude h (not shown in the figure) are given by

x = (N + h) sin θ cosϕ,

y = (N + h) sin θ sinϕ,

z =

(
b2

a2
N + h

)
cos θ.

Using r2 = x2 + y2 + z2,

r2 =
a4 sin2 θ + b4 cos2 θ

a2 sin2 θ + b2 cos2 θ
+ h

(
h+ 2

√
a2 sin2 θ + b2 cos2 θ

)
.

Cosine and sine of the geocentric colatitude θc are

cos θc =
1

r

(
b2

a2
N + h

)
cos θ,

sin θc =
N + h

r
sin θ.

Let unit vectors along r and N directions be ec and e, respectively, and their difference angle be δθ. Cosine
and sine of δθ are derived from ece and ec × e, respectively. Hence,

cos δθ = ece = sin θc sin θ + cos θc cos θ,

=
h+

√
a2 sin2 θ + b2 cos2 θ

r
.

sin δθ = (ec × e)y = sin θc cos θ − cos θc sin θ,

=
(a2 − b2) sin θ cos θ

r
√
a2 sin2 θ + b2 cos2 θ

.

As θc = θ + δθ,
cos θc = cos θ cos δθ − sin θ sin δθ.

To summarize the procedure, given the observation point (θ, ϕ) with altitude h in geodetic system, the
geocentric colatitude θc and the distance from the earth’s center r are determined by using above equations.
Setting ϕc = ϕ, field elements (Xc, Yc, Zc) at (r, θc, ϕc) are calculated. Those elements in the geodetic system
(X,Y, Z) are obtained by rotating the local coordinate axes by δθ (see figure below). X

Y
Z

 =

 cos δθ 0 sin δθ
0 1 0

− sin δθ 0 cos δθ


 Xc

Yc
Zc



26



θ

δθ

B

b

aO

θc

xc

zc

xd

zd

P

θ

δθ

B

-b

a
O

θc

xczc xd

zd

P

Rotation of local coordinates from geocentric (blue) to geodetic (red) on
northern (left) and southern (right) hemispheres (x:north, z:vertical down)

3.5.10 Circle fitting

The program uses the method of Taubin (1991). This method seeks the circle parameters by minimizing the
sum of the squares of “algebraic” distance r2i − R2 not the “geometric” distance ri − R, where ri and R are
the distance of a data point from the center and the radius of the circle, respectively. Although the algebraic fits
are less accurate than the geometric fits, Taubin’s method is one of those improved over the classical ones such
as Kasa (1976) (see, Chernov & Lesort 2005). The programming code used is adapted from the C++ routines
given by Chernov (2012). The following are crude explanation of the theory.

Consider n observation points (xi, yi) (i = 1, · · · , n) which are fitted by a circle of radius R at the center
(a, b). The geometric distance of an observation point from the arc of a circle is denoted as,

di = ri −R,

where
ri =

√
(xi − a)2 + (yi − b)2.

(xi,yi)

(a,b)

R

The geometric method seeks a, b, and R which minimize the sum of the squares of the distance di as,

n∑
i=1

d2i =
n∑

i=1

(√
(xi − a)2 + (yi − b)2 −R

)2

.

However, this is a nonlinear problem which is quite difficult to solve. Although excellent programming codes
of the geometric method are presented in Chernov (2012), here less accurate but simpler algebraic methods are
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considered. The algebraic distance is defined as,

fi = r2i −R2.

Now the quantity to be minimized is,

FK =
n∑

i=1

f2
i ,

=
n∑

i=1

(x2i + y2i − 2axi − 2byi + a2 + b2 −R2)2.

In the classical methods such as Kasa (1976), the parameters of the best fitted circle are easily obtained by
the conventional least squares method by introducing new parameters as A = −2a, B = −2b, and C =
a2 + b2 − R2. For the details of the method, see this page (http://www.ne.jp/asahi/paleomagnetism.rock-
magnetism/basics/pmag/circ/circ1E.html).

Unfortunately this method sometimes gives an answer biased toward a small R. According to Al-Sharadqah
and Chernov (2009),

fi = (ri −R)(ri +R) = di(2R+ di) ≈ 2Rdi.

Hence the classical method minimizes,

FK ≈ 4R2
n∑

i=1

d2i ,

and it often prefers to minimize R2 rather than
∑n

i=1 d
2
i . To improve this,

F =
1

4R2
FK

may be minimized. Taubin (1991) adopted the mean of r2i for the denominator R2. Hence, Taubin method
minimizes,

FT =

∑n
i=1

[
(xi − a)2 + (yi − b)2 −R2

]2
4n−1

∑n
i=1 [(xi − a)2 + (yi − b)2]

.

In this method, the equation of the circle is denoted as,

A(x2 + y2) +Bx+ Cy +D = 0.

The circle parameters a, b, and R are given by the new parameters as,

a = − B

2A
,

b = − C

2A
,

R2 =
B2 + C2 − 4AD

4A2
.

As the parameters can be scaled by a scalar and considering that B2+C2−4AD > 0, the following constraint
can be imposed among the parameters.

B2 + C2 − 4AD = 1.

Using these notations, the above FT is represented as

FT =

∑n
i=1(Azi +Bxi + Cyi +D)2

4A2z̄ + 4ABx̄+ 4ACȳ +B2 + C2
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where zi = x2i + y2i and x̄ = 1
n

∑n
i=1 xi, etc. Considering the above constraint B2 + C2 − 4AD = 1, the

problem is now equivalent to minimizing

F1 =
n∑

i=1

(Azi +Bxi + Cyi +D)2

on the constraint of
4A2Mz + 4ABMx + 4ACMy +B2n+ C2n = 1,

where Mx =
∑n

i=1 xi, etc. Using matrix notation, best fit parameters can be determined by minimizing,

F1 = tαMα

=
(

A B C D
)

Mzz Mxz Myz Mz

Mxz Mxx Mxy Mx

Myz Mxy Myy My

Mz Mx My n




A
B
C
D

 ,

on the constraint of,

tαNα =
(

A B C D
)

4Mz 2Mx 2My 0
2Mx n 0 0
2My 0 n 0
0 0 0 0




A
B
C
D

 = 1.

As this is a typical inverse problem, introducing a Lagrange multiplier η, the next equation is minimized.

F∗ =
tαMα− η(tαNα− 1).

∂F∗/∂α = 0 gives,
Mα− ηNα = 0.

This is an eigenvalue problem and η is obtained by

det(M− ηN) = 0.

Corresponding tα = (A,B,C,D) is determined by solving

(M− ηN)α = 0.
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