The Values of cos (27”), cos (47”), and cos (
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Compairing the coefficients of (3) with those of (4), we find
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Next, we will consider the equation
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Hence cos 0, cos 20 and cos 30 can be obtained by solving the cubic equation,
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Putting Y = 2y, this becomes
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The Change of the variable
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Next, we express z as z = s + t, then
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Choose s and t such that
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The other two solutions are obtained by multiplying s and ¢ by w =

,  —1—1/3i

W= —=w.

Namely,
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= —0.222520...
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Addendum

Let’s go back to
(:1:2 — 2z cos b + 1) (m2 — 27 cos 260 + 1) (x2 — 2z cos 360 + 1)

and rewrite this equation as
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Substituting
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into (26), we obtain
23 (Y —2cosf) (Y — 2cos26) (Y — 2cos 36)
Next, rewrite (3) as
S+ttt a4l
1 1 1
=a° (m3+x2+x++2+3>
r x2 x

Express the equation in parentheses by means of Y.
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we get the relation.
V3 +Y24bY +c

= (w3+;3>+<x2+;>+(3+b) <x+i>+(2+c)
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This determines the parameters b and ¢ as
b=-2, c=-1

Hence, we finally obtain

(Y —2cos0) (Y —2cos20) (Y —2cos30) = Y3+Y?2—-2Y —1
=0



