Gaussian Integral Using Residue Theorem - The Symmetric Contour -

Shoichi Midorikawa

1 The Original Contour

The residue theorem can be applied to the Gaussian integral[1] by finding the function $f_{a}(z)$ which satisfies the relation

$$
\begin{equation*}
f_{a}(z)-f_{a}(z+\tau)=e^{-z^{2} / 2} \tag{1}
\end{equation*}
$$

around the rectangular contour depicted in Fig.1. Here, the index a denotes the symbol for "asymmetric".

Figure 1: Original contour

Since I have not read the Kneser's original paper[1], my proof may be different from that of the previous work, although the conclusion is obviously the same.

Let us determine $f_{a}(z)$ in the following way. If the function $f_{a}(z)$ is proportional to $e^{-z^{2} / 2}$, i.e.,

$$
\begin{equation*}
f_{a}(z) \propto e^{-z^{2} / 2} \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
f_{a}(z+\tau) \propto e^{-(z+\tau)^{2} / 2}=e^{-\tau z} e^{-\tau^{2} / 2} e^{-z^{2} / 2} \tag{3}
\end{equation*}
$$

So it is natural to assume

$$
\begin{equation*}
f_{a}(z+\tau)=e^{-\tau z} e^{-\tau^{2} / 2} f_{a}(z) \tag{4}
\end{equation*}
$$

Solving the simultaneous equations involving (1) and (4), we have

$$
\begin{align*}
f_{a}(z) & =\frac{e^{-z^{2} / 2}}{1-e^{-\tau z} e^{-\tau^{2} / 2}} \tag{5}\\
f_{a}(z+\tau) & =\frac{e^{-(z+\tau)^{2} / 2}}{1-e^{-\tau z} e^{-\tau^{2} / 2}} \tag{6}\\
& =\frac{e^{-z^{2} / 2} e^{-\tau z} e^{-\tau^{2} / 2}}{1-e^{-\tau z} e^{-\tau^{2} / 2}} \tag{7}\\
& =-\frac{e^{-z^{2} / 2}}{1-e^{\tau z} e^{\tau^{2} / 2}} \tag{8}
\end{align*}
$$

From (5), we get the following expression of $f_{a}(z+\tau)$

$$
\begin{equation*}
f_{a}(z+\tau)=\frac{e^{-(z+\tau)^{2} / 2}}{1-e^{-\tau(z+\tau)} e^{-\tau^{2} / 2}} \tag{9}
\end{equation*}
$$

Since (9) should be equal to (6)

$$
\begin{equation*}
\frac{e^{-(z+\tau)^{2} / 2}}{1-e^{-\tau z} e^{-\tau^{2} / 2}}=\frac{e^{-(z+\tau)^{2} / 2}}{1-e^{-\tau z} e^{-\tau^{2}} e^{-\tau^{2} / 2}} \tag{10}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
e^{\tau^{2}}=1 \tag{11}
\end{equation*}
$$

In other words,

$$
\tau^{2}=2 \pi i n \text { for integer } n
$$

The simple solution of this is in the case of $n=1$, that is, $\tau^{2}=2 \pi i$ and

$$
\tau=\sqrt{2 \pi} e^{\pi i / 4}=\sqrt{\pi}(1+i)
$$

We also have the following relation.

$$
\begin{equation*}
e^{-\tau^{2} / 2}=e^{-\pi i}=-1, \tag{12}
\end{equation*}
$$

By substituting (12) into (5) and (8), we find

$$
\begin{align*}
f_{a}(z) & =\frac{e^{-z^{2} / 2}}{1+e^{-\tau z}}, \tag{13}\\
f_{a}(z+\tau) & =-\frac{e^{-z^{2} / 2}}{1+e^{\tau z}} \tag{14}
\end{align*}
$$

We can verify that the equation (1) holds.

$$
\begin{aligned}
f_{a}(z)-f_{a}(z+\tau) & =\frac{e^{-z^{2} / 2}}{1+e^{-\tau z}}+\frac{e^{-z^{2} / 2} e^{-\tau z}}{1+e^{-\tau z}} \\
& =e^{-z^{2} / 2}
\end{aligned}
$$

$1+e^{-\tau z}=0$ at $\tau z=\pi i$. Since $\tau^{2}=2 \pi i, \tau z=\frac{\tau^{2}}{2}$. Thus $f_{a}(z)$ has a pole at $z=\frac{\tau}{2}$

$$
\left.\frac{d}{d z}\left(1+e^{-\tau z}\right)\right|_{z=\tau / 2}=-\tau e^{-\tau^{2} / 2}=\tau
$$

The residue of $f_{a}(z)$ at $z=\tau / 2$

$$
\frac{e^{-\tau^{2} / 8}}{\tau}=\frac{e^{-\pi i / 4}}{\sqrt{2 \pi} e^{\pi i / 4}}=\frac{e^{-\pi i / 2}}{\sqrt{2 \pi}}=\frac{-i}{\sqrt{2 \pi}}
$$

Thus,

$$
\begin{equation*}
\oint f_{a}(z) d z=2 \pi i \times \frac{-i}{\sqrt{2 \pi}} \tag{15}
\end{equation*}
$$

As $R \rightarrow \infty$ the value of $|f(z)|$ tends to 0 uniformly along the left and right fringes of the contour, we obtain

$$
\int_{-\infty}^{\infty} f_{a}(x) d x+\int_{\infty+i \sqrt{\pi}}^{-\infty+i \sqrt{\pi}} f_{a}(z) d z=\sqrt{2 \pi}
$$

Therefore

$$
\begin{aligned}
\sqrt{2 \pi} & =\int_{-\infty}^{\infty} f_{a}(x) d x-\int_{-\infty+i \sqrt{\pi}}^{\infty+i \sqrt{\pi}} f_{a}(z) d z \\
& =\int_{-\infty}^{\infty} f_{a}(x) d x-\int_{-\infty}^{\infty} f_{a}(x+i \sqrt{\pi}) d x \quad(z=x+i \sqrt{\pi}) \\
& =\int_{-\infty}^{\infty} f_{a}(x) d x-\int_{-\infty}^{\infty} f_{a}(x-\sqrt{\pi}+\tau) d x \quad(\tau=\sqrt{\pi}+i \sqrt{\pi}) \\
& =\int_{-\infty}^{\infty} f_{a}(x) d x-\int_{-\infty}^{\infty} f_{a}(x+\tau) d x \quad(x-\sqrt{\pi} \rightarrow x) \\
& =\int_{-\infty}^{\infty}\left(f_{a}(x)-f_{a}(x+\tau)\right) d x \\
& =\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi} \tag{16}
\end{equation*}
$$

2 The Symmetric Contour

Now consider the function $f_{s}(z)$ which satisfies the "symmetric" contour.

$$
f_{s}\left(z-\frac{\tau}{2}\right)-f_{s}\left(z+\frac{\tau}{2}\right)=e^{-z^{2} / 2}
$$

Figure 2: The Symmetric Path

Comparing this with (1)

$$
f_{a}(z)-f_{a}(z+\tau)=e^{-z^{2} / 2}
$$

we find that

$$
\begin{align*}
f_{s}\left(z-\frac{\tau}{2}\right) & =f_{a}(z)=\frac{e^{-z^{2} / 2}}{1+e^{-\tau z}} \tag{17}\\
f_{s}\left(z+\frac{\tau}{2}\right) & =f_{a}(z+\tau)=-\frac{e^{-z^{2} / 2}}{1+e^{\tau z}} \tag{18}
\end{align*}
$$

Namely

$$
f_{s}(z)=f_{a}\left(z+\frac{\tau}{2}\right)=\frac{e^{-(z+\tau / 2)^{2} / 2}}{1+e^{-\tau(z+\tau / 2)}}=\frac{e^{-(z+\tau / 2)^{2} / 2}}{1-e^{-\tau z}}
$$

Since $1-e^{-\tau z}=0$ at $\tau z=0, f_{s}(z)$ has a pole at $z=0$

$$
\left.\frac{d}{d z}\left(1-e^{-\tau z}\right)\right|_{z=0}=\left.\tau e^{-\tau z}\right|_{z=0}=\tau
$$

The residue of $f_{s}(z)$ at $z=0$ is

$$
\frac{e^{-\tau^{2} / 8}}{\tau}=\frac{e^{-\pi i / 4}}{\sqrt{2 \pi} e^{\pi i / 4}}=\frac{e^{-\pi i / 2}}{\sqrt{2 \pi}}=\frac{-i}{\sqrt{2 \pi}}
$$

Therefore

$$
\begin{equation*}
\oint f_{s}(z) d z=\sqrt{2 \pi} \tag{19}
\end{equation*}
$$

As $R \rightarrow \infty$ the value of $|f(z)|$ tends to 0 uniformly along the left and right fringes of the contour, we obtain

$$
\begin{aligned}
& \int_{-\infty-i \sqrt{\pi} / 2}^{\infty-i \sqrt{\pi} / 2} f_{s}(z) d z+\int_{\infty+i \sqrt{\pi} / 2}^{-\infty+i \sqrt{\pi} / 2} f_{s}(x) d x=2 \pi i \times \frac{-i}{\sqrt{2 \pi}} \\
\sqrt{2 \pi}= & \int_{-\infty-i \sqrt{\pi} / 2}^{\infty-i \sqrt{\pi} / 2} f_{s}(z) d z-\int_{-\infty+i \sqrt{\pi} / 2}^{\infty+i \sqrt{\pi} / 2} f_{s}(z) d z \\
= & \int_{-\infty}^{\infty} f_{s}\left(x-i \frac{\sqrt{\pi}}{2}\right) d x-\int_{-\infty}^{\infty} f_{s}\left(x+i \frac{\sqrt{\pi}}{2}\right) d x \quad\left(z=x \mp i \frac{\sqrt{\pi}}{2}\right) \\
= & \int_{-\infty}^{\infty} f_{s}\left(x+\frac{\sqrt{\pi}}{2}-\frac{\tau}{2}\right) d x-\int_{-\infty}^{\infty} f_{s}\left(x-\frac{\sqrt{\pi}}{2}+\frac{\tau}{2}\right) d x \quad(\tau=\sqrt{\pi}+i \sqrt{\pi}) \\
= & \int_{-\infty}^{\infty} f_{s}\left(x-\frac{\tau}{2}\right) d x-\int_{-\infty}^{\infty} f_{s}\left(x+\frac{\tau}{2}\right) d x \quad\left(x \pm \frac{\sqrt{\pi}}{2} \rightarrow x\right) \\
= & \int_{-\infty}^{\infty}\left(f_{s}\left(x-\frac{\tau}{2}\right)-f_{s}\left(x+\frac{\tau}{2}\right)\right) d x \\
= & \int_{-\infty}^{\infty} e^{-x^{2} / 2} d x
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2} / 2} d x=\sqrt{2 \pi} \tag{20}
\end{equation*}
$$

References

[1] H. Kneser, Funktionentheorie, Vandenhoeck and Ruprecht, 1958.
For reviews, see
https://math.stackexchange.com/questions/34767/int-infty-infty-e-x2-dx-with-complex-analysis
Keith Conrad, "The Gaussian Integral"

