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1 Introduction

A unit of measure is “a quantity that is used as the basis for expressing a given quantity, and is

of the same type' as the quantity that is to be expressed”.(!) As evidenced by the term “weights and

measures”, the history of units began from the simple stage of using familiar quantities such as the
weight of grain or the lengths of the human hand and foot as units to express the quantities that we
deal with in daily life such as length, volume, and weight.

A unit that is used in exchanges between people must be guaranteed to have a constant magnitude
within the scope of that exchange. Quantities that can, by consensus, serve as common standard
over a broad scope were sought and selected to serve as units. The ultimate such quantity i1s an entity
common to all of humankind, the earth itself, which was selected as the foundation for the metric system.
Specifically, 1/86400'" of the period of the earth’s rotation is defined as one second, 1/40,000,000%" of
the total length of the earth’s meridian is defined as one meter, and the mass of a cubic 1/10"" meter of
water is defined as one kilogram. 2

The history of units of measure, on the other hand, is the history of the establishment of new concepts
that have accompanied the development of natural science. The laws of nature describe the ‘relation-
ship” between ‘a given quantity’ and ‘another quantity’ specified as mathematical expressions. The
‘given quantity’ and ‘another quantity’ referred to here are often quantities that correspond to ‘newly
established or greatly transformed concepts’ that are born of new discoveries, as occurred with mass,
energy, and electrical charge. As this process goes on, the need arises to deal with quantities of a new
concept and a quantity is selected as a standard for that purpose. That quantity becomes a new unit.

A system of units is a set of multiple units that are related on the basis of these kinds of laws and
systematically organized. Consider, for example, the units for length and volume. It is; of course,
possible to define virtually unrelated units for length and volume, such as we have with the units foot
and gallon. However, by making use of the law which states that “the volume of a cube is proportional
to the third power of the length of its side” to relate these two units, we can say that “the volume of

a one-meter cube is the unit 1 meter® ”

which is a more systematic approach. In this way, a number
of base units and a relationship formula that describes a natural law can be used to define all other
units (which is referred to as “deriving” units in the terminology of units) and so obtain what is called

a coherent unit system. In a coherent unit system, there is only one unit for one type of quantity. Thus,

*The original japanese version of this paper was released May 1984.
tE-Mail:suchowan@box.email.ne.jp, URL-http://www.hosi.org/.
I For more information, see Appendix A, “Basic approach to units”.
2 Currently, this basis is being replaced by definition methods in which the magnitudes of the units are virtually
invariable, providing better reproducibility.



in a coherent unit system, the relationship formula on which the system rests is expressed in the most

succinct way (specifically, in such a way that the coefficients of the formula are in the simplest form) .
So then, what comes next?

Of course, we can consider going beyond the framework of the earth and defining units with concepts
for which agreement can be reached within a broader scope. The quantities that then become available
to serve as the standards for defining units include the quantities of the ‘fundamental physical constant’
category, quantities such as ‘the speed of light in a vacuum’, ‘the quantum of action’, ‘the Boltzmann
constant’, and so on. These quantities are believed to have values that remain constant everywhere in
the universe. When trying to construct a coherent unit system, however, i1t is not reasonably possible to
use all of the fundamental physical constants in the definitions of units. Then, wouldn’t we expect the
fundamental physical constants that were not used in defining units have fractional magnitudes of unit
quantities of the same dimension?

By a surprising coincidence,® however, if the dozenal number system is used to express ‘the speed of
light in a vacuum’ and ‘the quantum of action’ as the defining constants such that these constants are
strictly multiples of integer powers of 12 of the unit quantities, it is possible to construct a coherent unit
system in which not only the constant that was used in the definition, but the Rydberg constant (Re), the
atomic mass unit (u), the Bohr radius (ag), and half the value of the Planck length (Ip = (1/2)y/Gh/c3a
) as well, can be approximated to within an error of 1% by a multiple of integer powers of 12 of the unit
quantities. In that case, many other physical constants, including the charge of an electron, the mass
of an electron, the fine structure constant, the molar volume of an ideal gas under standard conditions,
the black-body radiation at the ice point, the density of water, and others, can be approximated by
multiples of integer powers of 12 of the unit quantities. Moreover, by adding the Boltzmann constant
and using it in the definition of thermodynamic temperature, the gas constant of an ideal gas can be
approximated by a multiple of an integer power of 12 of the unit quantity and the Stephan-Boltzmann
constant and the specific heat of water can be approximated by multiples of integer powers of 12 of the
unit quantities with a factor 2 remaining.

We define the Universal Unit System as “the unit system that is constructed by using the dozenal
system and using ‘the speed of light in a vacuum’, ‘the quantum of action’; and ‘the Boltzmann constant’
as the defining constants in such a way that these constants become strict multiples of integer powers
of 12 of the unit quantities and ‘the Rydberg constant’, ‘the atomic mass unit’, ‘the Bohr radius’, and
‘half the value of the Planck length’ can be approximated by multiples of integer powers of 12 of the

unit quantities”. This Universal Unit System is described in the remainder of this paper.

3 To prevent any misunderstanding, let me emphasize that these are simply accidental coincidences as far as physical
science is concerned. Also, please understand that the author has no intention to promote the use of the “Universal Unit
System” in the real world.



2 Why the dozenal system?

First, we consider the physical and mathematical advantages of the dozenal system.

2.1 Dimensionless quantities that can be constructed of combinations of

fundamental physical constants

To eliminate the influence of the unit system, let’s try to list some of the dimensionless quantities that
can be made up from combinations of fundamental physical constants. For putting these coincidences

to use, the dozenal system 1s the only choice.

2.1.1 The fine structure constant and the elementary electrical quantity

The fine structure constant, «, a dimensionless quantity, was originally introduced for the purpose of

explaining of the fine structure spectral emission lines.
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The right side of Eq. (2) expresses the Coulomb force acting between two elementary electrical quan-

tities (i.e. the electrical charge of an electron) separated by a distance of r . The left side indicates that

this force is proportional to 0—2 by a factor of @. For this reason, « can be interpreted as a dimensionless
quantity that represents the strength of electromagnetic interaction.
The value of the fine structure constant, o, is close to 1272,
1
0= ——
137.03599

Therefore, the ratio of the elementary electrical quantity ,e, and “the dimensioned quantity of charge,

= 1.0508188 x 125, (3)

which is derived from the speed of light in a vacuum, ¢g, and the quantum of action, A”, is

12— % 10250946 x 127! ! 4
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2.1.2 The Rydberg constant and the Bohr radius

The dewviation of the fine structure constant, a, from an integer power of 12 is nearly the same as the

deviation of 47 from 12.

1
Ar = 1.0471976 x 12} . = —— % 193 5
m *H200) T 13750087 (5)

The ratio of the Bohr radius, ag, and “the dimensioned quantity of length, L, which is derived from
the Rydberg constant, R, (= 1.0973732 x 10(710) x 2nrad/m)”,

L = 27rad/Re, = 0.91126705 x 1075 m (6)
18
“TB - %(strict) = 1.0034581 x 1203 (1 (7)



2.1.3 The electron mass and the atomic mass unit

The ratio of the mass of an electron, m., and “the dimensioned quantity of mass, M, which is derived

from L, the speed of light in a vacuum, ¢y, and the quantum of action, A”,

h
M=—
- (8)
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= g(strlct) = 0.94835932 x 12, Y

The ratio of the atomic mass unit, u, and the mass of an electron, me, is
u o? s
— = 1822.8885(10) = i x 1.0004359 x 127, (10)

me

The deviations of ratio (9) and ratio (10) from multiples of an integer power of 12 are nearly of the

same magnitude, but in opposite directions. Therefore,

% = 1.0004359 x 128, (1) (11)

2.1.4 The Planck length
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The ratio of the general expression of the Planck length, 4/ —-, and L is close to 2, when factors of
€

multiples of an integer power of 12 are eliminated.
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to express the tensile force in a superstring in terms of the Planck length, the ratio of the Planck length

and L then becomes
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2.2 Advantages of the dozenal system in mathematical expressions

We will consider the advantages of the dozenal system in mathematical expressions from the general
viewpoint (the number of factors and factorials) and from the viewpoint of individual mathematical

constants.

2.2.1 Number of factors

The number 12 has more factors (1, 2, 3, 4, 6, and 12) than does 10 (1, 2, 5, 10), so the dozenal system

offers the following two advantages over the decimal system.

1. Many fractions can be expressed as finite dozenals.

2. Multiplication is simple.

2.2.2 Factorials

A little-mentioned fact is that factorials are more easily represented in the dozenal system than in the
decimal system because of the large number of trailing zeroes. Of the numbers from 1 to n, one of every

2% numbers have & times factor 2. Thus, the number of times that 2 appears as a factor in n factorial is
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Of the numbers from 1 to n, one of every 3* numbers have k times factor 3. Thus, the number of

times that 3 appears as a factor in n factorial is
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The reason is that, 12(= 2? x 3) contains, on the average, the prime factors 2 and 3 in just the right
ratio for expressing n factorial. For this reason, the dozenal number system is also generally convenient
for calculating permutations, combinations, and so on.

(reference)

The order of the largest sporadic simple finite group
= 246320597611313317119123129131141147159171(110)
888_8191.6727_3964_1634_7510-5895_4578_8183_2706_3298_0480-0000-000010)

= 992.4B98_B225_2AB9_530B_A466-1487_B0A8_0000-0000-0000-0000-0000; 2

2.2.3 Mathematical constants

These constants, too, can be approximated by relatively simple dozenal fractions. I comment on a few

interesting examples below.

1. 471'(% 10(12))
The surface area of a sphere is approximately one order of magnitude larger than the area of a
square that has sides equal in length to the radius of the sphere. Because of that, the conversion

of non-rationalized units and rationalized units for the electromagnetic quantity units explained



Table 1: Mathematical constants (expressed in the dozenal system)

Nz = 1.9329.72A1 | 278 = 0.0069 | 0! = 1
o = 6.3494_.16A0 | 277 = 0.0116 | 1! = 1
4r = 10.69683170 | 276 = 0.0230 | 2! = 2
e = 2.8752.3607 | 27° = 0.0460 | 3! = 6
1/e = 044B8.4216 | 2=* = 0.0900 | 4! = 20
5 = 0.6B15.1888 | 273 = 0.1600 | 5! = A0

¢ = 1.74BB6773 | 272 = 0.3000 | 6! = 500
V2 = 14B79.170A | 27 = 0.6000 | T = 2B00
V3 = 1.894B_9800 | 2t* = 14.0000 | 8! = 1.B400
NG = 229BB_1325 | 218 = 194.0000 | 9! = 156000
log, 2 = 0.8399_1248 | 2t = 3_1B14.0000 | A! = 127_0000
log, 3 = 1.7029.9480 | 2t = 9_BA46_.1594.0000 | B! = 1145_0000
z=1log, 10 = 3.7029.9480 | 2¥37 = BAO0S8_A990_A0A8.0000 | 10! = 1.1450_.0000

later (see Appendix B, “A method of organizing the dimensions of electromagnetic quantities”) is
accomplished by a correction of almost exactly a factor of 12.

2.V2 (m 1.5319))
Because of this relationship, it is possible to set good bounds for the heights and widths the standard
sheet paper sizes. There is further discussion of paper sizes later in this paper (see Appendix D.2,
“Standard sheet paper sizes”).

3. The golden ratio ¢ = (14 /5)/2 (~ L.75(19))
It is known that the ratio of adjacent numbers in the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89, 144, 233, --+) rapidly converges on the golden ratio. The 12" number in the sequence
happens to be 122. It thus so happens that one of the fractional series that best approximates the
golden ratio can be represented by a two-digit dozenal fraction in the dozenal system.

4. The 12-tone chromatic scale of music log, 3 (= 1.7(12))4
The properties of a musical scale can be evaluated by whether combinations of sounds whose fre-
quencies are simple integer ratios can be approximated any number of times with good accuracy.

The 12-tone chromatic scale of music is excellent in this respect.

(a) The smallest ratio of primes, 2: 1
This corresponds to one octave in the scale, so it must have a strict representation. Accordingly,
the common ratio of a musical scale frequency must be /2 (where n is a suitable natural number).
(b) The next-smallest ratio of primes, 3 : 1
To efficiently approximate this ratio while satisfying condition (a), it can be approximated by the
best approximation fraction, log3/log2 = log, 3 = 1.58496.... There are n candidates for the

denominator of the best approximation fraction. Expanding into a continued fraction, we get

4 Because of the relationship log, 3 & 1.7(12), 2?172) S5 10(1?2). This corresponds to 2(1?0) S5 10?10) in the decimal number

system.
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(c) The next-smallest ratio of primes, 5 : 1

Selecting from among the n candidates obtained by condition (b) those that approximate this
ratio relatively well, n = 12 and n = 53 remain.
(d) Larger ratios of primes

The ratios of 7:1 or higher are not very significant to the human ear.

This is all to say that the only practical musical scale is the 12-tone chromatic scale of music.®

5 The 12-tone scale was probably first developed at the end of the 16®" century by Zhi Zai-yt of the Ming dynasty.(S)
In the 19'" century, two men, T. Perronet Thompson and R. H. M. Bosanquet, tried to make a keyboard for use with a
53-tone scale. (4) This attempt, however, cannot be said to have produced practical results.



3 The Universal System of Units Standard

As described in the introduction, the Universal Unit System is defined as a unit system that is con-
structed using the dozenal number system and ‘the speed of light in a vacuum’, ‘the quantum of action’,
and ‘the Boltzmann constant’ as the defining constants such that these constants are strict multiples of
integer powers of 12 of the unit quantities and ‘the Rydberg constant’, ‘the atomic mass unit’; ‘the Bohr
radius’, and ‘half the value of the Planck length’ are approximated by multiples of integer powers of 12
of the unit quantities. All unit systems that satisfy this definition are ‘Universal Unit System’.

However, although this concept corresponds to our world wide ‘metric system’; it still contains degrees
of freedom. The metric system, too, includes various types of systems, such as the MKS unit system or
CGS unit system, the absolute system of units or the gravitational system of units, rationalized systems
of units or non-rationalized systems of units.

Therefore, in this section, I would like to attempt a proposal for a standard that equivalent to the
worldwide International System of Units (SI—Systéme International d’Unités), as standard which T will
refer to as the Universal System of Units Standard in the following, to distinguish it from simply a
Universal Unit System.

One of the most important points concerning the formulation of the specifications is the selection of
the dimensions for the base units.

The concept of quantity is defined axiomatically by formulas that express natural laws, so the di-
mensions of the base unit, too, are selected on the basis of the ease of deriving units while considering
their mutual relations, somewhat as in solving simultaneous equations.(®%7) Accordingly, it is difficult to
explain the process of selecting the dimension for each base unit in a systematic way. Therefore, taking
the International System of Units (ST) as an example, T would like to explain it in the form of explaining
the discrepancies with the Universal System of Units Standard.

The dimensions of the base units of the International System of Units (SI) are length, time, mass,
thermodynamic temperature, electrical current, amount of substance, and luminous intensity; the units
of plane angle and solid angle were classified as supplementary units that are vague in character.

As opposed to that, the Universal System of Units Standard employ impedance, plane angle,
logarithmic quantity, amount of substance, length, time, energy, and thermodynamic tem-
perature as the base unit dimensions. The first four of these have natural units that are employed as
base units just as they are. We create quantities of the remaining four dimensions that serve as base units
by multiplication or division of the Rydberg constant,® the speed of light in a vacuum, the quantum of

action, and the Boltzmann constant, which are fundamental physical constants used in deriving units.

1. Replacement of mass with energy
The reason for selecting energy instead of mass is that it is more suitable as a starting point for
the derivation of units such as force, work, pressure, and electrical charge. Selecting energy makes
it easier to understand the meaning of quantities when the dimensions of various quantities are
represented by the multiplication or division of the dimensions of the base units. The unit for
pressure, for example, is kg/(m -s?) in the International System of Units (SI). It is probably not
intuitively understandable why there is one m in the denominator. In contrast to this, in the

Universal System of Units Standard, when the unit of pressure is expressed by the multiplication

6 The reason for selecting the Rydberg constant as a defining constant is made clear in the section 3.3 “Defining constants
and base units”.



and division of base units, we have J,,/m3. 7 This clearly indicates that pressure is energy divided
by volume.

2. Replacement of electrical current with impedance
Impedance is selected in place of electrical current to emphasize the symmetry of the units of elec-
trical quantities and magnetic quantities (see Appendix B), “A method of organizing the dimensions
of electromagnetic quantities”). With the unit of electrical current as a base unit, there is no sym-
metry, and a confusing collection of units whose methods of derivation are difficult to understand
systematically, such as C, V, Q, F, H, T, and Wb, become necessary. In the International System
of Units (ST), how these units are derived from the unit of electrical current, A, is not ordinarily an
issue and so there is a perception that they are used as completely independent units. By taking
the approach described in Appendix B, it was possible to minimize the number of derived units that
have a characteristic symbol.

3. Elimination of luminous intensity
Luminous intensity is omitted because it is a quantity that is dependent on human biological char-
acteristics. No particular optical unit is established and the unit of radiant flux, Wu, (which has the
same dimension as work) is used as the unit of luminous flux. That is to say, the light that has the
maximum relative luminosity factor that produces the same visual effect is converted to radiant flux
and expressed in terms that unit. Other optical units are derived from the unit of luminous flux.
The method of deriving the unit of luminous intensity from the unit of luminous flux is selected
because it is considered to be more natural than the reverse (in the International System of Units,
too, the unit of luminous intensity, cd, which is a base unit, is actually defined in terms of radiant
flux). In the Universal System of Units Standard, the unit of luminous intensity is Wu/radz. The
work equivalent of luminous flux thus becomes the dimensionless quantity, K .1 = 0.002644 1 5).

4. Dealing with supplementary units
In the Universal System of Units Standard, the supplementary units are treated as units of clearly
independent dimensioned quantities.

(a) Plane angle is counted as one of the dimensions of the base unit.
(b) Solid angle is regarded as the squared quantity of a plane angle (explained later).

Furthermore, although the logarithmic quantity is ignored in the International System of Units (ST),
in the Universal System of Units Standard, it is recognized as a base unit dimension. The same

dimension is used for the quantity of information as well.

The only ‘units’ in the Universal System of Units Standard that have characteristic symbols are the
24 types that are listed below (base units that are natural units, supplementary constants that are not
coherent but can be used according to natural units, defining constants, base units that are derived
from the defining constants, derived units of dynamical quantities, and derived units of electromagnetic
quantities — see Table 2). The constants that are classified as supplementary constants are not coherent

with respect to natural units, but cannot be ignored for practical reasons.

™ For now, I will use letters prefixed to the corresponding SI unit symbols to use in place of the new symbols required by
the Universal System of Units Standard: n (natural prefix) or w (universal prefix). This is true for the following as well.



3.1 Natural units

Units of the following four dimensions are base units for which natural units are used just as they
are. Concerning impedance, see Appendix B, “A method of organizing the dimensions of electromagnetic

quantities”; concerning plane angle and logarithmic quantity, see Appendix A.2, “ ‘Mathematical’ units”.

Natural unit of impedance —  Q, =sr, /@ = 29.9792458Q (strict)
€0
Natural unit of plane angle — rad = Zsin7t1
T
Natural unit of logarithmic quantity — neper = loge
Natural unit of amount of substance — mol, = N;l(inverse of the Avogadro constant)

3.2 Supplementary constants

The following four series of quantities are not coherent with respect to natural units, but they may be

positioned as supplementary constants and used as units.

Elementary electrical quantity e=+/ah/Q, = 1.037443B6 x 10(_1124;Cu
Bt1
2m =2
Total solid angle of the surface of a hypersphere Qi (k =1,2,..) = #Zl)radk
Logarithm of an integer Bi(k=1,z2,.) = log, 2"neper
Universal mole mol, = 10(252)(]\7_1) = 10(252)m01n

3.2.1 The elementary electrical quantity

Because the fine structure constant, «, 1s a dimensionless quantity, when the natural unit of impedance,
Q,, 1s taken as a base unit, we cannot construct a coherent unit system with both the quantum of action,
h, and the elementary electrical quantity e as defining constants. The reason for not using the elementary
electrical quantity e in place of the quantum of action, | in the defining constants is that the fine structure
constant, a, should appear only in various quantities that represent the nature of an electron. ®

To make it possible to use the elementary electrical quantity e as a unit, the elementary electrical
quantity e is positioned as a supplementary constant. We take the elementary electrical quantity to
be the positive value of the electrical quantity of an electron, so the sign is the opposite that of the

International System of Units (SI).

3.2.2 Total solid angle of hyperspherical surfaces

The solid angle of a hypershperical surface is an extension of the concept of a plane angle into a
multi-dimensional space, so the ‘area’ for when a section of unit ‘area’ on the surface of a sphere of unit
radius is ‘seen’ from the center of the sphere is expressed as rad” (the International System of Units (ST)
sr when k = 2). Written as rmrad®, it should be spoken as ‘steradian’. Because the surface area of a
sphere of radius r is 47r?, the total solid angle of a sphere is 4msr(= Q2).

In the Universal System of Units Standard, a hyperspherical solid angle is regarded as an integer power

of a plane angle. The area, S, of a spherical square (a figure on the surface of a sphere that has four

8 Of the supplementary constants, only the elementary electrical quantity contains in its definition a quantity that is
obtained through measurement. I expect that the fine structure constant, too, may sooner or later become a mathematical
constant that can be calculated strictly.

10



sides of equal length that meet at equal angles) that has sides of length # is then

0
S = 4sr/rad x sin™! tan? 3 (18)
and so the solid angle, 82, for plane angle @ can be ‘defined’ as
0
0? = lim n? x (the solid angle of a spherical square which side length are —) (19)
n—00 n

(see Appendix A.3, “Coherent unit system”).
By deriving solid angles from plane angle in this way, it is possible to avoid an unbounded increase in
units when considering high-dimensional hyperspheres in general. The total solid angle of a £ dimensional

hypersphere, Qj, is (&)

or
Qi = rad" (20)
T(5)
In particular,
Q, = 2rrad (which should be written as €, and spoken as“cycle”.
Also, 10(_112)91 = 30degrees, 10(_122)91 = 2.bdegrees, 10(_13)91 ~ 1 minute.)
Qy = 4mrad? (which shoud be written as Q2 and spoken as “turn”.)
Qs = 212rad®

Solid angle becomes paired with impedance and takes on a symmetrical role in deriving “field” quantities
from ‘charge’ quantities for dimensions of electromagnetic quantities (see Appendix B, “A method of

organizing the dimensions of electromagnetic quantities”).

3.2.3 Logarithm of an integer

The same dimension is used for quantity of information as is used for logarithmic quantity. The
reason 1is that because information is something that limits disorder, it 1s a quantity that is measured
by the logarithm of the ‘number of cases’ that are limited by the information. The value &, which
may actually be used as the base of logarithmic quantity and quantity of information, is assumed to be
1,z(= log, 12),4, 8, ... (generally, except for z, integer powers of 2). B; = bit, B, = digit(;). A semitone

(half-step) of the 12-tone chromatic scale of music is expressed as 0.1(12)B1.

3.2.4 Universal mole

Although there is a natural unit of amount of substance, the inverse of the Avogadro constant, mol,, =
Ngl, the base unit of amount of substance in the International System of Units (SI), mol, is defined

using the atomic mass unit, u and the unit of mass, g, as
mol = EN 7! (21)
u

The quantity that is obtained in the same way in ‘the Universal System of Units Standard’ is the

universal mole,

Su

7Ngl (22)

mol, =

2

The dimensionless quantity Bu is essentially extremely close to 10(92), 9

and with some degree of

arbitrariness, may also be strictly 10(2?2).

? That is to say, also, to a certain extent, close to 2(7122). log(mol, /moly,) = 72.057694(12)B1.

11



3.3 Defining constants and base units

The defining constant of wavelength(Rs,) and the base unit of length (my = 10(612)91/ROo

= 27.21028842cm

= 38999.753km/ (4 x 12(710)))
The defining constant of speed(cg) and the base unit of time (84 = 10?12)mu/co = 390.2675219ms)
The defining constant of action(#) and the base unit of energy (Ju = 10(2162)h/su = 64.1433465mJ)
The defining constant of entropy(kg) and the base unit of temperature (K, = 10(_112?%/1473 = 1.211831K)

Derived units that have no characteristic symbol (examples)

area (m? = 740.39980cm? )
volume (m3 = 20.146492dm® )

speed (my, /8y = 0.697221442m/s = 2.50999719km/h )
frequency (91 /sy = 2.562344915Hz = 30.748139Hz/12 )
molar concentration mol,/m3 = 6.552393mol/dm” )

The dimensions of the base units were selected by the process that is described at the beginning of
this section. Next, it is necessary to select the defining constants from among the fundamental physical
constants. From the definition of the Universal Unit System, the use of ‘the speed of light in a vacuum’,
‘the quantum of action’, and ‘the Boltzman constant’ is already settled. Although one more fundamental
physical constant is needed for the definition of the remaining four base units, which are not natural
units, that constant is selected from among ‘the Rydberg constant’, ‘the atomic mass unit’, ‘the Bohr
radius’, and ‘half the value of the Planck length’.

While ‘the atomic mass unit’ is by all means a desirable defining constant for the field of chemistry,
there are many unsettled requirements, such as which chemical element to base it on and whether to
select a particular nuclear species or to use an average of elements. Because any value within a certain
range can be selected, this constant is not suitable as a defining constant of the Universal System of
Units Standard.

The constant ‘half the value of the Planck length’ has a relative error of close to 1% with respect to
the other three candidates and also has the practical problem of insufficient measurement accuracy for
the constant.

‘The Rydberg constant’” and ‘the Bohr radius’ do not involve the vagueness of ‘the atomic mass unit’.
In addition, because these constants are deeply involved with the electron, they have the advantage that
the fundamental physical constants that are closely related to the electron (charge, mass, the classical
electron radius, and the Bohr magneton) as well as the Josephson constant, Kz, (of the Josephson
effect) which is used in the standard representation of voltage, and the von Klitzing constant Ry (of
the quantum hole effect), which is used in the standard representation of electrical resistance, can all be
represented accurately if the fine structure constant can be strictly determined.

Using ‘the Rydberg constant’ for a defining constant, puts the derived unit of mass in the range (about
equal to the mean mass of nucleons in the aluminum nucleus) where it can be used as ‘the atomic mass
unit’ without modification. That cannot be said for ‘the Bohr radius’. Also, ‘the Rydberg constant’
is related to optical measurements and is the only of the fundamental physical constants that are not
dimensionless quantities that has a reproducible accuracy of more than 10 decimal places; and so is the
most practical for use as a defining constant. Therefore, ‘the Rydberg constant’ was finally selected as

the fourth defining constant. The base units comprise the base units just defined and the following base
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units that are created by means of new defining constants.

Finally, there remains the problem of how many integer powers of 1012) to append as a factor to give
the base unit an appropriate. Concerning this problem, for ¢y = 1052)mu /Sy, € = 1082)Cu,u = 10ﬁz)gu,
we adopt the approach of selecting the multiple of integer powers of 10(;3) so as to make the greatest
common divisor of P, , and R as large as possible. Currently, the greatest common divisor is 8, and
as far as selecting a base unit of appropriate scale is concerned, this seems to be the maximum value
(because of the relationship e = \/%, there are surprisingly large restrictions on selecting an appropriate

scale. See Table 2’s comment column).

3.4 Derived units of dynamical quantities

Derived units of mass (ge = Jusi/m2 = 131.950228g
Derived unit of work (W, Ju/8uy 164.357378mW 112.2560891lm
Derived unit of force (Ny, Ju/my, 235.731961mN 24.037970gf
Derived unit of pressure (P, = J,/m3 = 3.18384692Pa = atm/1.65002)

19.000833kg /122,

N e e

Derived units that have no characteristic symbol (example)

Torque (J,/rad = 64.1433465mN - m/rad)

Taking a quantity of the dimension energy as a base unit, there is probably no objection to the
selection of these units. As we can see, the unit of mass is g, = 131.950228g. On the other hand, the
relationship between the unit of ‘amount of substance’ of the International System of Units, mole (from
the measured value of the Avogadro constant), and the supplementary constant, mol,, of the Universal
System of Units Standard is mol, = 132.007729mol. It would be surprising if this were a completely
accidental coincidence. This represents the fact that the atomic mass unit can be approximated with

good accuracy at an appropriate scale.

3.5 Derived units of electromechanical quantities

Co = VIessl! = 28.8965943mC
A, = Jusa1Qnl = 74.0430416mA
O, = A,/m, = 272.114137mA/m
Gy Cy/m?2 = 390.283662mC/m”

Derived unit of electrical quantity  (
Derived unit of electrical current  (

Derived unit of field strength (
(

Derived unit of flux density

Derived units that have no characteristic symbol (examples)

13



CuQ,, /rad® = 10.8862230Wb/£2
Cufln = VIusulln = 0.86629810Wb
Magnetic potential Ayrad? 5.8921580mA 2

Magnetic pole (
(
(
Magnetic field strength (O rad’ 21.6541550mAQs /m
(Gu
(Su
(

Magnetic flux

Magnetic flux density 11.7004098T
11.6999260H
Q. /rad co = o

Inductance

R N N

Magnetic permeability

Cyrad? = 2.2995179mC9

A, Qn = VIusilQ, = 22197545V
8.1577766V /m

Gy rad 31.0577870mCQ5 /m?
Su/n 13.0179233mF
rad?/Q,, cq = ¢

Electric flux
Electrical potential
Electric field strength
Electric flux density

Electrical capacitance

(
(
(Ou
(
(
(

— e e e e

Permittivity

Because a natural unit is used as the unit of impedance, the unit of electrical quantity(charge) is
derived from units that are already defined. Looking at the formula for the force between electrical
quantities in Appendix B, “A method of organizing the dimensions of electromagnetic quantities”, we

have

energy length charge®

(23)

=1 d
length e e length?

Solving this equation for charge, the dimension of electrical quantity(charge) is

.
charge = 4| 7e§ergy e (24)
impedance

The constant of proportionality of Coulomb’s law is represented by the product of the natural units
of impedance and the speed of light in a vacuum, which is a feature of the set of formulas that are
employed in the Universal System of Units Standard (see Appendix B, “A method of organizing the
dimensions of electromagnetic quantities”). We should note the symmetry of electrical quantities and
magnetic quantities. Because of that symmetry, made it possible to not assign a symbol to the unit of
electrical potential.

In the Universal System of Units Standard, the use of supplementary constants is permitted as an
exception to coherence, so either rad® or the supplementary constant €, may be used as the unit of solid
angle (in computations, however, it is necessary to use either one or the other unit). The conversion
value for International System of Units (SI) that uses rad? is shown above because it happens that the
International System of Units (SI) is coherent with Q2. For the conversion value for when 3 is used,
the derived units of charge, electrical current, flux density, and field strength may be used as they are.
The so-called rationalized units are coherent with €25 and the non-rationalized units are coherent with

2
rad”.
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4 Summary of the units of the Universal System of Units Stan-

dard

Summarizing the above, the units of the Universal System of Units Standard that have characteristic

symbols are listed in Table 2.

Table 2: The units of the Universal System of Units Standard that have characteristic symbols

Category Dimension / Ttem Symbol Value Comment
wave number Roo = 12—2 Q/D
Defining constants speed co
action [
entropy kg
Non-coherent clementary electrical quantity 3
supplementary total solid angle of a hypersphere | @y = 2nrad, Qg = 4msr k = 1,2,.
constants logarithm of an integer By By = bit,  B; = digit(1s) k = 1,2, .
universal mole moly, 132.007729 mol
Base units impedance Cn 20.9792458 @
that are plane angle rad 57.2957795 degree
natural units logarithmic quantity neper 4.34294482 4B
quantity of substance mol, 1
Base units length my 27.21028842 cm 128 % 1 D
that are not time Su 390.2675219 ms 1216 x 1 D/cg
natual units energy Tu 64.1433465 mJ 1216 X 1272 heg/D
thermodynamic temperature Ky 1.211831 K 12—4 X 1272 heg/Dkg
mass su 131.950228 s 1252 X 122 R/cgD
Derived units of work Wy 164.357378 mw 1 X 1272 hcg/D2
dynamical quantities force Nu 235.731961 mN 128 X 1272 heg/D?
pressure Py 3.18384692 Pa 1 X 1272 heg/DP
charge Cu 28.8965943 mcC 1216 X 121 \/h/Qn
Derived units of electrical current Ay 74.0430416 mA 1 x 1271 \/FR/Sncq/D
electromagnetic quantities field strength Ou 272.114137 mA/m 1278 X 121 \/R/Qnecg/D?
flux density Gu 390.283662 mC/ m? 1 X 121 \/h/Qun/D?
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A Basic approach to units

(This Appendix is part of the Universal System of Units Standard.)

A.1 Classification of quantities

In the Introduction, the term ‘of the same type’ (the same dimension, in the terminology of units)

was introduced out of the blue. Actually, however, there is no standard for objectively distinguishing
whether or not quantities are of the same type. Whether or not quantities are of the same type should
be determined by agreement. It should be noted that what we can measure directly is limited to pure
numbers. What we call ‘measuring length’ is actually no more than reading the numbers on the scale of
a ruler.

For example, it wouldn’t matter at all if length in the vertical direction (height) and length in the
horizontal direction (horizontal distance) were represented with different units. Actually, the height of
Mt. Everest'? is not expressed as 8.848 km; nor is the distance of a marathon course expressed as
42,195 m. This can be said to show that height and horizontal distance are recognized as different types
of quantities.

The type of a quantity, however, is not entirely arbitrary. Where arbitrariness enters is for the most
part in the decision to classify quantities coarsely or in detail. These concepts of quantity are actually
defined axiomatically within a network of natural laws. In other words, the concepts of quantity can be
seen as defined by the formulas that express natural laws themselves. In natural laws, there 1s no need
for humans to distinguish between height, horizontal distance and other such quantities, so they are all

lumped together in the category of length.

A.2 ‘Mathematical’ units

A ‘mathematical’” unit is a suitable example when one is considering the classification of quantities.
In the following, I attempt a discussion of ‘mathematical’ units from the viewpoint that they are

different from pure numbers.

Because a unit is “a quantity of the same type that serves as a standard for measuring and representing

a given quantity”, it is also possible discover units when we restrict ourselves to mathematical objects
rather than the objects of physics.

For example, log,; 2 is a pure number that has the value 0.3010... . So, then, (from the beginning,
without omission) let’s introduce the baseless logarithm log 10. By axiomatically defining addition,
subtraction, multiplication, and division, this is easily made an object of mathematical consideration.

In this case, log 10 becomes the unit for the quantity ‘baseless logarithm’, and can be used as follows.
log 2 = 0.3010..1og 10 (25)

The two sides of this equation are the quantity ‘baseless logarithm’ and cannot be reduced to numbers.
The baseless logarithm probably does not appear anywhere else, but what results if we replace this log

with sin™'? In the theory of analytic functions of complex variables, logarithmic functions and inverse

10 Tibetan name is Chomo Liingma.
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I Actually, this is none other than ‘the plane

trigonometric functions are the same type of thing.
angle’ that we know so well.

That is to say, taking the principal values,

2
rad = Zsin7'1 (26)
T
1.,
degree = g0 Sin 1 (27)

It is clear that these relationships are completely parallel to Eq. (25).

In this way, it is possible to assume units that cannot be reduced to pure numbers for entirely math-
ematical quantities as well. Of course, no conflict results if ‘mathematical’ units are regarded as pure
numbers as they are ordinarily considered. This does not mean that one viewpoint or the other is the
correct one, but rather that this is a problem that should be settled by agreement. In this paper, we
take the position that ‘mathematical’ units are a kind of unit that cannot be reduced to a pure number
without being divided by the same type dimensioned quantities.

In the International System of Units (SI), the issue of whether plane angle is a base unit or a derived
unit involving length divided by length (pure number) had not been settled. Previously, a separate
classification referred to as supplementary units was established. I quote from the SI document, “Le
Systéme International d’Unités ” (2°¢ Ed., 1973), as translated by the Japanese National Research
Laboratory of Metrology.'?

“Although it is possible to consider an SI unit to be either a base unit or a derived unit, the 11"
Conférence Générale des Poids et Mesures (1960) recognized a third class of units referred to as supple-
mentary units. It was thus not settled whether supplementary units are base units or derived units”.

“The General Conference on Weights and Measures did not settle (or, rather, has not yet settled) the
matter of whether a number of SI units belong to the category of base units or the category of derived
units. Those SI units are placed in a third class of units that is referred to as ‘supplementary units’.

One is free to choose whether to treat the supplementary units as base units or derived units”.

A.3 Coherent unit system

A unit system in which a number of base units and equations that express relationships that describe
natural laws are used to define (‘derive’, in the terminology of units) all other units in the system is
called a coherent unit system.

In a coherent unit system, there is only one unit for each quantity. Thus, a coherent unit system is
one for which that group of defining relationship equations is the simplest (specifically, this is to say
that the equations have the simplest set of coefficients). As can also be understood from the fact that
“the concept of quantity is defined by the formulas that represent natural laws” as described in the
previous section, the term coherence begins with the specification of the set of relationship equations
that describe natural laws.

For example, denoting the area of a triangle as S, the length of the base as a, and the height as h, we

Hgin~l e = —tlog(ee &£ /1 — 22).

12 In a later revision, the category of supplementary units was removed.
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calculate
1
S = —ah (28)
2
However, this is really very clear?

S =ah (29)

Is there a problem with writing it as follows? ()

Actually, even if written as Eq. (29), all of the coefficients of the formula that expresses the area are
simply doubled, so no logical problem arises. The area of a circle is expressed as 2772, but if we think
of this as “length of perimeter x radius”, it would be more natural than our formula. This coefficient of
1/2 seems to have been handed down from heaven, but actually it is simply a human convention.

As we can see from this example, when we denote the unit of length as m, although it is convenient
to attach the label of m? to the coherent unit of area, there is no concrete specification that definition
cannot be decide unless a corresponding relationship equation is specified. This is not limited to area,
but is clearly true for all derived units.

Of course, Eq. (29) is intentionally and extreme example, and so may not be suitable for use in practice.
In mathematics, however, it is an everyday occurrence to have quantities of the same concept, but of the
opposite sign and differing by a factor of 2r. Also, in electromagnetics, the fact that the same coherent
metric system of units can have units of the same quantity that differ by a factor of 47 in rationalized
units and non-rationalized units is indeed this same kind of phenomenon.

The concept of unit coherence is extremely important, but not absolute. Even the International System

of Units (ST), which features coherence of units, is filled with problems.

1. Celsius temperature
In the International System of Units (SI), Celsius temperature is defined in the following way, with
C classified as a derived unit.
“Celsius temperature, t, is defined as t = T — Ty, the difference between the two thermodynamic
temperatures 7' and Ty, where Ty = 273.15K. The temperature interval or temperature difference
may be expressed using either Kelvin or Celsius degree. The unit ‘Celsius degree’ is equal to the

unit ‘Kelvin’.

Because a unit is “a quantity of the same type that serves as a standard for measuring and repre-

senting a given quantity”, K and ‘C are algebraically the same. Thus there are two units for the
quantity whose dimension is temperature, which 1s still an exception to the principle of one unit for
one quantity, even if the ratio of the two units is 1.

From the definition of Celsius temperature it is correct to say that “the normal human body Celsius
temperature is 37.00K” | but that the converse expression, “the normal human body temperature is
37.00 °C”, is incomplete to surely understand.(!)

2. Frequency

Hertz (Hz) is a unit of frequency that is defined as an inverse of seconds, but carries the warning
that it should only be used for periodic phenomena. For example, wind speed must be represented
as 30m/s, not as 30 mHz. Because frequency is a quantity that has the dimension [period num-
ber(=phase)/time], according to the principle of coherence, it should be Hz = rad/s. Assuming from
various formulas, however, it is Hz = Q1 /s, with 1 = 27rad. If a unit is not coherent, it is very

natural that its range of use is limited.
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As can be understood from the above examples, coherence is something that is rather difficult to
accomplish. There are also times when the coherence of units should be sacrificed in order to reduce the
number of formulas. Another way we can put this is that multiple units can be recognized for the same
type of quantity in order to reduce the number of concepts.

Let’s consider the decay of elementary particles.

An elementary particle’s lifetime 1s the mean time until decay, and can also be said to be the time
until the number of particles becomes 1/e due to decay. The half-life, on the other hand, is the time until
the number of particles becomes 1/2 due to decay. We consider these two to be quantities of different
concepts that both have the dimension time. However, by recognizing the two units loge(= neper)
and log2(= By) for the logarithmic quantity, these can be interpreted as a single quantity (dimension:
time /logarithmic quantity) that represents the slowness of decay with two units (for example, a half-
life of 7 seconds represents roughly the same thing as a lifetime of 10 seconds. Therefore, this can be
expressed as “the decay slowness is 7 seconds/ B;” or “the decay slowness is 10 seconds/neper”).

The same can be said for frequency and angular frequency as well. The relationship of the quantum

of action, h, and the Planck constant, h, should be considered to be as follows.
h = h/rad = 2rh/ (30)

Of course, this kind of lack of coherence should be limited to cases in which the ratios of multiple

units can be strictly determined, such as they can be for ‘mathematical’ units. 3

13 This is also why it is desirable that the fine structure constant is a mathematical constant that can be strictly calculated.
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B A method of organizing the dimensions of electromagnetic
quantities

(This Appendix is part of the Universal System of Units Standard.(lo))

B.1 Introduction

It has been suggested that one reason that electromagnetism is difficult to understand is the complexity
of the unit system. Some of the unit systems that have been proposed in the past are listed in Table 3,
but because the International System of Units (SI) based on the MKSA system of units has recently
become widely adopted, the kind of confusion seen in the past has disappeared. Although the era of
proposing unit systems for the real world has ended, and the viewpoint of reorganizing the relations
between rationalized unit systems and non-rationalized unit systems and the relations between ternary
unit systems and quaternary unit system can be considered educationally significant even at this time.
In this paper, we take the position of regarding solid angle as a physical quantity that has an independent
dimension, consider a reorganization of the relationships among various unit systems and dimensions of
electromagnetic quantities. Although this is necessary for a reorganization of the relationship between
rationalized unit systems and non-rationalized unit systems, one can understand that it is also useful for
reorganizing the relationship between the dimensions of electromagnetic quantities as shown in Figure
1. (This standpoint does not conflict with the International System of Units (SI). Strangely, however,
according to Table 3(®) this has not been discussed deeply in the past.)

Table 3: Unit systems that have been proposed in the past

No. of dimensions Name Physical quantities that have independent dimensions
3 CGS electrostatic Length, mass, time
CGS electromagnetic Length, mass, time
CGS Gaussian Length, mass, time
4 CGS-Fr Length, mass, time, and electrical quantity
CGS-Bi Length, mass, time, and electrical current
MKSu Length, mass, time, magnetic permeability
MKSe Length, mass, time, permittivity
MKVA Length, mass, voltage, electrical current
MKSQ Length, mass, time, and electrical resistance
MKSC Length, mass, time, electrical quantity
MKSA Length, mass, time, electrical current
VAMS Voltage , electrical current, length, time
5 LMTQP* Length, mass, time, electric flux, and magnetic flux
LMTI¢* Length, mass, time, electrical current, and magnetic flux
LMTI~y Length, mass, time, electrical current,
and electric and magnetic coupling coefficient
LMTepu Length, mass, time, permittivity, and magnetic permeability
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B.2 Introducing the solid angle

The 47 difference that appears in the coefficients of the formulas of rationalized unit systems and
non-rationalized unit systems is, as is well known, a geometrical value. What demonstrates the origin of
that in the most straightforward way is probably Gauss’ theorem (integration form).

Rationalized unit system Non-rationalized unit system
D ndS=0Q //D~ndS:4ﬂ'Q
In a rationalized unit system, the unit electric flux is considered to be the electric flux created by
the unit electrical point charge in all of space; in a non-rationalized unit system the unit electric flux is
considered to be the electric flux created by the unit electrical point charge in 1 steradian (sr). Therefore,

if we rewrite this taking solid angle to be an independent dimension, we have

//D ndS = 0Q (31)

Here, Q5 1s the total solid angle of a sphere. Performing a dimension analysis considering D = ¢E,

and using the constant €2,,, which has the dimension of impedance, and the speed of light in a vacuum

Co,
ST

Qn - Cp

. . -1 - Y
Magnetic permeability of a vacuum Ho = € 160 =
ST - ¢

Permittivity of a vacuum € =

Ho _ %n _ 4 2o

€o ST Qs
We must note that the dimension differs for the ratio of voltage and electrical current [Q2] and the ratio

of electric field and magnetic field [€2/sr].

Characteristic impedance of a vacuum 7y =

B.3 Formula set that takes solid angle into consideration

In the following, I regard solid angle as an independent dimension and try to rewrite the set of formulas
of electromagnetism. We can confirm that €25 appears in the places where it should appear, geometrically
(see section B.4). The rationalized unit system is a unit system in which Q, is regarded as the pure
number 1; the non-rationalized unit system is a unit system in which sr is regarded as the pure number
1. Comparing the formula for the force between electrical currents and the definitions of meter and
ampere, we get Q, = 29.9792458Q (strict).
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/
Force between electrical quantities f=— Q' = Q,co QO
g dmr? 7/“2
Q51 2Q, 1T
Force between electrical currents df = uoifl = —
2rr cg T
Lorentz force F =Q(E +v x B)
1
Energy density of an electromagnetic field u = E(E -D+H-B)
2
1
Poynting vector S = Q_E x H
2
- . 0B
Electromagnetic induction law VXxE= —?
D
VxH= +E + QQJ
. . V-D=Q
Gauss’ theorem (differential form) { 2P
V-B=0
Charge conservation law V-J+ a—i =0
. 0A
Scalar potential E=-V¢-— i
Vector potential B=+VxA
2
Ad — Copo = —Qzﬁ
Equation that satisfies the potential 32A €0
AA — Eoﬂow = —Qz/,to.]

B.4 Relationships among the dimensions of electromagnetic quantities

By performing a dimension analysis based on the set of equations described above, a diagram that
illustrates the relations among the dimensions of the electromagnetic quantities can be constructed
(Figure 1). The quantities that are related to ‘charge’ lie in the middle, with the quantities that are
related to electric ‘field” and magnetic ‘field” arranged symmetrically on either side. Also impedance and
solid angle take on symmetrical roles in generating the ‘field” quantities from the ‘charge’ quantities. The
concepts that are to be distinguished are arranged so that their dimensions are all mutually different, and
the electromagnetic quantities, which are complex at first sight, are seen to be orderly and systematic.

A result of the dimension analysis is that the magnetic potential equals the product of the electrical
current and solid angle, as shown in Figure 1. The geometrical grounds for that are explained below.(!)

Assuming that.

1. the principle of superimposition is established for the magnetic potential and

2. the magnetic potential is 0 when a circuit is seen directly from the side,

the magnetic potential at viewpoint O in Figure 2 is the sum of the magnetic potentials due to the
three sides, which is to say 0. On the other hand, this is also the sum of the magnetic potentials due to
circuit ABC and circuit FED.

Accordingly, we can say that the magnetic potential due to a triangular circuit is proportional to the
product of the current that is flowing in the circuit and the solid angle that the circuit makes. Because
any circuit can be represented by a combination of triangles, the same is also true for any circuit.

The solid angle made by one trip around the circuit from the viewpoint varies only with 5. n trips
around a one-turn circuit and one trip around an n-turn circuit are equivalent in terms of phase geometry,

so the ‘turn’ of ampere-‘turn’ can be regarded as 5.
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m. flux density B e. quantity density p e. flux density D
X area = area X area = area X area —+ area
x 1mpedance x solid angle
m. flux @ e. qnantity @ e. flux ¥
+ time x time + time x time + time x time
x 1mpedance x solid angle
e. potential V' e. current [/ m. potential V,,
~length| | xlength ~length| | xlength ~length| | xlength
x 1mpedance x solid angle
e. field strength e. current density j m. field strength H

x impedance

x solid angle

Figure 1: Relationships among the dimensions of electromagnetic quantities
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Viewpoint

~~—Current [

Figure 2: Explanation of magnetic potential

B.5 Electrostatic, electromagnetic and symmetrical unit systems

Looking at Figure 1, deriving the dimension of impedance from length and time, we can see that
it is possible to reduce the number of independent dimensions by one by reorganizing the dimensions
of electromagnetic quantities.(!2) Electrostatic, electromagnetic, and symmetrical unit systems can be

positioned as unit systems for which this kind of reorganization has been carried out.

1. Electrostatic unit system
This is the unit system in which ©,, is set to ¢ ! so that the coefficient on the right side of the formula
for the force acting between electrical quantities becomes the pure number 1, and the (ano)l/2
multiples of the quantities of the center column and right-hand column in Figure 1 become the newly
defined quantities of the center column and right-hand column, and the (ano)_l/2 multiples of the
quantities of the left column become the newly defined quantities of the left-hand column. Thus,
the electric flux density/electric field strength = solid angle. The formula set of the electrostatic
unit system is the formula set of section B.3 in which eg = sr. Thus, if sr is set to the pure number
1, then ¢y becomes the pure number 1.

2. Electromagnetic unit system
This 1s the unit system in which €2, is set to ¢g so that the coefficient on the right side of the formula
for the force acting between electrical currents becomes the pure number 2, and the (Qn/co)l/2
multiples of the quantities of the center column and right-hand column of Figure 1 become the newly
defined center and right-hand column quantities, and the (Qn/co)_l/2 multiples of the quantities of

the left-hand column become the newly defined left-hand column quantities. Thus, the magnetic
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flux density/magnetic field strength = solid angle™!. The formula set of the electromagnetic unit
system is the formula set of section B.3 in which g = sr='. Thus, if st is set to the pure number 1,
then gy becomes the pure number 1.
3. Symmetrical unit system

This is the unit system in which, in the electrostatic unit system, the magnetic flux and magnetic
flux density are replaced by the ¢y multiples of the magnetic flux and magnetic flux density and the
magnetic potential and magnetic field strength are replaced by the cal multiples of the magnetic
potential and magnetic field strength, !* so that electric flux density/electric field strength = solid
angle and magnetic flux density/magnetic field strength = solid angle™!. The formula set of the
symmetrical unit system is the formula set of section B.3 in which ¢¢ = sr and A and B are
everywhere replaced by calA and calB, and H is everywhere replaced by coH. Thus, if sr is set to

the pure number 1, then ¢; and gy become the pure number 1.

B.6 Conclusion

The positioning of the existing unit systems, when starting from the standpoint of regarding solid
angle as a physical quantity that has an independent dimension is summarized in Table 4. According
to that positioning, the relationship between the rationalized unit system and the non-rationalized unit
system and the relationship between the ternary unit systems and the quaternary unit system are
concisely organized. In addition, the understanding of the relationships among the dimensions of the

electromagnetic quantities brought about by Figure 1 is probably useful from an educational standpoint.

Table 4: Positioning of the existing unit systems

No. of dimensions Name Position
3 CGS electrostatic st = the pure number 1,2, = cal
CGS electromagnetic st = the pure number 1,8, = ¢
CGS Gaussian symmetrical st = the pure number 1,9, = cal, However
the upper left and lower right of Figure 1 are corrected by ¢
4 MKSA system Q9 = the pure number 1

14 That is to say, dimensioned quantities of the electromagnetic unit system are used for these.
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C Gravitation

(This Appendix is part of the Universal System of Units Standard.)

C.1 The gravitational constant and the gravity field equations

When representing the mass of a celestial body by means of the Universal System of Units Standard,
the gravitational radius (half the Schwarzshild radius) is used rather than using mass directly. Because
the accuracy of measuring the Newton constant is poor, representing the mass of a celestial body directly
in terms of mass results in poor accuracy, but the gravitational radius can be measured to an accuracy
of more than 10 decimal places. The reason for the poor accuracy of measuring the Newton constant is
that the quantities that are required for astronomical calculations almost always appear in the form of
the product of the Newton constant and mass and the Newton constant seldom appears alone, so it is
difficult to construct observations and experiments for measuring the bare Newton constant with high
accuracy. The gravitational radius has an appropriate scale and so is convenient.(13)

If we define a quantity that has the dimension ‘force’ as ‘the gravitational constant’, there is a good
chance that the geometrical parts can be separated from the coefficients in the formula. Make the
gravitational constant Ng = CBLG_1 = h — 9A B33B x IO?fz)Nu, then

dadd, T

Gm  mc}

gravitational radius r,, = — = N—( half the Schwarzschild radius) (32)
CO G
L B TmTm! o Fmin

gravitational force f = Ng 5 =G (33)
gravitational acceleration ¢ = cg% = (707/%0)2 (34)

. . Ng 1
gravity field equation Ty, = E(le — §5ikR) (35)

2

In the gravity field equation (35), because R is the curvature tensor, it has the dimension of solid

angle/area. T, on the other hand, is the energy-momentum tensor, and so has the dimension of energy

density. Therefore, the denominator of the coefficient —5 1ust be the dimension of solid angle (Tt is

2Q,

interesting to compare this to the equation for the energy density of an electromagnetic field).

C.2 The Planck length

The Planck length, a distinguishing feature of superstring theory, can also be represented in well-
bounded form in the Universal System of Units Standard.
That is to say, half the value of the Planck length is

1 /Gh -
5@ =1.022031 x 1073} m,, (36)

In order to represent the tensile force in a superstring, half the value of the Planck length, {p, adjusted

by the fine structure constant, () becomes

1 [Gh -
=35 T 0.BAT0BB x 10(1§§mu (57)
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D Units outside the Universal System of Units Standard

(This Appendix is for reference only. Tt is not part of the Universal System of Units Standard.)

D.1 Time units based on the earth’s rotation

universal minute = 100.17(12ys, (strict)
clock = 10(12) universal minutes
day = 128 clocks
year = 365 days and 31 clocks

universal century = 64 years

= 10-0513_16A2.8(15)s,

The time units can be seen as both as units of time and as units of the angle of rotation of the earth
in space.

For activities on the earth, year and day cannot be ignored as time units. However, year and day
cannot be expressed as s, multiples of integer powers of 12, nor is their ratio a simple value. Therefore,

are the following possible within small integer powers?

1. The ratio of the largest unit of local earth time and s, is approximately an integer power of 12.

2. The ratio of the largest unit of local earth time and year is exactly an integer power of a certain
integer n.

3. The ratio of the smallest unit of local earth time and day is exactly an integer power of same integer
n.

4. The ratio of the smallest unit of local earth time and s, is approximately an integer power of 12.

Actually, for n = 2, this kind of unit can be constructed within small integer powers.
universal century =  the largest unit of local earth time = 26 years ~ 12%,

clock = the smallest unit of local earth time = 277 days =~ 123s,
The relations of clock to day and year to universal century are completely binary, but clock and

universal century are both approximately s, multiples of integer powers of 12, > and so connect smoothly
to the Universal System of Units Standard. People have a proclivity for using large units for large
quantities and using small units for small quantities, so the inconvenience of having to exclude year and
day from the Universal System of Units Standard is reduced by connecting both units smoothly to the
Universal System of Units Standard.

Accidentally one clock is equal to the difference between one Julian year and one tropical year. For

the earth at this time, the relationship

5 _
1 tropical year = 3657 mean sun days (38)

holds to a high degree of accuracy (error on the order of 1078). Moreover, not only are leap years
every 22 years and leap year corrections every 27 years, for integer power of 2 years, there is some
interesting coincidences, as shown in Table 5. Therefore, if we make one universal century 64 years,
the same positional relationship among the sun, Venus, the earth and Mars recurs successive universal
centuries (because the rotation of Venus is in the reverse direction of the revolution, in 8 earth tropical

years, Venus makes exactly 25 rotations with respect to the sun).

15 Because 12 is 22 x 3, All factor 3 appeares between year and day as a factor of the ratio of a universal century and
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Table 5: The revolution of the earth and Venus and Mars

Planet | Rotations and revolutions | Earth mean sun days | Earth tropical years | Power of two
Venus 3 rotations 729.06 days 1.9961 years 1

13 revolutions 2921.16 days 7.9979 years
Mars 17 revolutions 11678.77 days 31.9754 years

The ratios of s, to clock is made to become strict; the error with respect to the actual rotation of
the earth is adjusted at the end of each universal century by means of one negative leap clock (from the
current trend, one clock will be deleted just about every universal century, and only to that extent will
no deviation arise). In the far future the error with respect to the actual ratio of tropical year to day

will be adjusted by omitting a leap day at the end of each universal century.

D.1.1 Calendar 1

A normal year has 365 days(=304+31+304+314+304+31+304+31430+31+4304+30 days) and a leap year
has 366 days(=304+31+30+314+30+31+30+314+30+314+30+31 days). The leap days are inserted at the
end of every 4 years except at the end of every 2 universal centuries. Four universal centuries have
93502 days. This length is almost equal to 13 Mayan katuns(=93600days). If we make the epoch of ‘the
Universal Unit System Calendar’ December 215°, 2012, '6 the end of every 4 centuries roughly coincides
with the end of ‘Katun 4 Ahau’ of the Mayan calendar.

There are following relationships between clock and other time units.

1 clock = 11 minutes and 15 seconds
4 clocks = 45 minutes
1012y clocks = 2 hours and 15 minutes
100(12) clocks = 27 hours = 1 day and 3 hours

If a day begins at 0 o’clock AM, then 9 o’clock AM is 40", clock, 6 o’clock PM is 802, clock, and 3

(12) (12)
o’clock AM of the next day is 100'(3}112) clock.

D.1.2 Calendar 2

I describe an alternative calendar which covers not only tropical year but also anomalistic year. In
this calendar the months which consist of 31 days are continuously set around aphelion point. The
complete rule of this calendar is defined in the next page. The leap days are inserted at the end of every
4 anomalistic years except at the end of universal centuries whose remainder of order number divided
by 27 is odd number. The epoch of this calendar is same as calendar 1.

Instead of clock, this calendar uses universal minute and hour. There are following relationships

between universal minute, hour and other time units.

a clock which is approximately 126. Actually, 3¢/2 = 364.5. Surprisingly, this value of 3%/2 was used in the Tai Xian
calendar of Yang Xi’ong(53BcfAD18).(14) Incidentally, the Tai Xdan calendar was never used in real history.

16 This date is the winter solstice of year 2012 for almost all time zones, and according to G.M.T.’s 24 modification, the
date is the end of ‘Baktun 4 Ahau’ of Mayan Calendar whose long count is 13.0.0.0.0.
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1 universal minute =  56.25 seconds
1 hour = 64 universal minutes
1 day = 24 hours

23(12) hours = 1 day and 3 hours

The relationship year - universal century - 27 universal centuries is parallel with the relationship
universal minute - hour - 27 hours. So, the beginning of a day should be 3 o’clock in this calendar.
We can consider about more alternative calendar which uses universal minute exactly equal to 100(12)s,.

In this case, the last hour of a day have 1.7(;5) leap universal minutes.

** The Sample Rule and Perl Program of the Universal Unit System Calendar **

1. The date notation
The date notation is made C/Y/M/D. where

D: day 0 <=D < 31_(10) = 27_(12)
M: month 0 <=M < 12_(10) = 10_(12)
Y: year 0 <= Y < 64_(10) = 54_(12)

C: universal century O <= C < 324_(10) = 230_(12)
(* valid range is 20736_(10)(=10000_(12))years)

2. Calendar Epoch
Calendars Epoch 121/0/0/0 is December 21st, 2012 (JDN=2456283).

3. Month(days and arrangement)
3.1 The months which consist of 31 days:
Continuous 5 or 6 months sequence whose start month number is equal
to the quotient of C divided by 27.
3.2 The months which consist of 30 days:
The other months.

4. The definition of the normal year/leap year

4.1 Normal year
When the sequence of 3.1 clauses consists of 5 months, the year
which contains the first month is defined as the normal year.

4.2 Leap year
When the sequence of 3.1 clauses consists of 6 months, the year
which contains the first month is defined as the leap year.

(* When the 6th month of the sequence belongs in the next year,
the days of the leap year are 365 days though it is contrary to
the etymology of ’leap’.)

5. The arrangement of the normal year/leap year
5.1 The year when the remainder of Y divided by 4 is not 3 is a normal
year.

5.2 The year of the end of universal century when the remainder of
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C divided by 27 is odd number is a nomal year.

5.3 The other years are leap years.

#! /usr/bin/perl

# month ofset tables for nomal year

oMM = (0, t, 2, 3, 4, 5,5, 5,5, 5,5, 5, 5);

# usage
die "Usage: cal c¢/y/m/d" if ($ARGV[0] eq undef);

# get date form
($cc,$yy,$mm,$dd) = split(’/’,$ARGV[O]);

# date normalization

$cl = $cc % 27;

$ct = ($cc-$cl) / 27;

$cm = $ct % 12;

$ch = ($ct-$cm) / 12;

$mm = $cm;

($yy, $mm) = ($yy-1,$mm+12 ) if ($mm < 0);
($c1,$yy) = ($cl-1,63 ) if ($yy < 0);
($cm, $cl,$mm) = ($cm-1,26,$mm+1) if ($cl < 0);
($ch,$cm) = ($ch-1,11 ) if ($cm < 0);
$y1 = $yy % 4

$yh = ($yy-$y1) / 4;

# conversion to Julian Day Number
$jdn = $ch *(((365%4+1)*16*%27-13)*12-5)

+ $cm * ((365%4+1)*16%27-13 +30)

+ $cl * (365%4+1)*16 - int($cl/2)
+ $yy * 365 + $yh

+ $mm * 30 + $MM [$mm]

+

$dd + (2526409-2898564);
# adjustment of leap day
$jdn++ if ($yl == 3 && $mm > 5 &&

1($yh == 15 &&($cl % 2 > 0)));

print "$ARGV[0]: $jdn";
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D.2 Paper size specifications

Although this cannot be called a unit, we take it up as an interesting coincidence.

An An-size sheet is “a rectangle whose long side and short side are in the proportion of v/2 : 1 and
whose area is 27" x 1m?”.

A Bn-size sheet is “a rectangle whose long side and short side are in the proportion of v/2 : 1 and
whose area is 27" x 1.5m?”.

Therefore, if we define the system of paper size specifications as “rectangles whose long side and short
side are in the proportion of v/2 : 1 and whose area is 2*/% x (m,/12)?”, then

n=22 A0 2?' 239 n=23 B0 2

i2) X 2(12) (i2) X 215,
n=20 AL 2 x ) =210 BL 2 < 2
n=18 A2 2 <2 n=19 B2 205 X 2,
n=16 A3 2?1%) X 2?135) n=17 B3 2?1%) X 2?162)
n=ld AL 2 <2 n=15 B4 20 X 2,
n=12 A5 2(213) X 2?13) n=13 B5 2?1%) X 2?162)
n=10 A6 2(213) X 2(213) n=11 B6 2(2162) X 2?1%)
n=8 AT 2 x 25 n=9 0 BT 2 <20,
n=6 A8 2 x 2 =T B8 25, < 2,
n=4 A9 2 x iy 0= BY 2 x 2,
n=2 Al0 2?13) X 2?1%) n=3 BIO 2?162) x 2(112)
n=0 ALl 2337 x 203 n=1 BI1 203 x 20

The size of a B5 sheet would then be 181.40mm x 256.54mm, which is almost the same as the actual
size of 182.06mm x 257.47mm. The same can be said for the entire B series of paper sizes (the length of

the upper side of a B5 size book is almost exactly 2/3"m,,).
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E Table of physical and astronomical constants

(This Appendix is for reference only. Tt is not part of the Universal System of Units Standard.)
Finally, fundamental physical constants, material constants, and astronomical constants expressed by

means of the Universal System of Units Standard are presented.'”

*

a constant that is entirely linked to the fine structure constant.

Table 6: Fundamental physical constants

Characteristic impedance 1 Q, /rad® (Vo] €0)
in a vacuum
Avogadro constant 1 mol ! (Na)
Rydberg constant 1 X 10(612) Q /my (Reo)
Speed of light in a vacuum 1 X 10?12) my, /sy (co)
Quantum of action 1 X 10(_122? Jusu (R)
Boltzmann constant 1 X 10(_1125; Ju /Ky (kp)
Gas constant 1 X 10?12) Ju/(mol,Ky)  (R)
Atomic mass unit 1.0009 051B_6  x 10(—12;; u (m'2C/12)
Bohr radius 1.006B_859A5 X 10(_1%) my, *(ad /AT Rss)
Fine structure constant 0.0107.3994_38 (12) *la = e?Q, /h)
Charge of an electron 1.037443B6.4 10(_1124)1 Cu *(\/Ozh/—Qn)
Mass of an electron 0.B469.2178.0 10(_122:))’ Sy *(me = 4T Roo h/Q1 0% o)
Classical electron radius 1.1368_3609_A x 10(_1; my, *(a3Q /4T Reo)
Bohr magneton 0.659A_AB66  x 10(_112; Aym? *(eh/2me)
Proton/electron mass ratio 1090.19B5_78 (12) (mp/me)
Gravitational constant 2A.B33B X 10?{12) N, (Ng = ct/G)
Half the value of the Planck length 0.BAT0BB X 10(_122; I, (Ip = (1/2)\/Gh/c3a)
Planck mass 5A.B223 x 1075, u (V/heo /G)
Stephan-Boltzmann constant 0.1B82.B282  x 10(_162) W, /(m2K2)  (x2k% /60Rh%c3)
Josephson constant 0.3ABA_1394 x 10(1122) Q1/(Cufn)  *Kj=2e/h= (Ql/ﬂ')\/a/h—Qn)
von Klitzing constant 5B903_2B9B  x 10(212) Q, /2 *(Rg = h/e? =270, /Q1a)

17 This table doesn’t take account of the latest (1998) values of the constants. If you are interested in these constants,

see http://physics.nist.gov/constants.
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Black-body radiation at the ice point
Molar volume of ideal gas

Density of air

Speed of sound in air

Density of water

Density of ice

Buoyancy of saltwater

Buoyancy of saltwater

Boiling point of water

Specific heat of water

Viscosity of water

Kinematic viscosity of water

Surface tension force of water
Enthalpy of the formation of water
Gibbs energy of the formation of water
Maximum sensitivity light wavelength 611 x 10
Maximum sensitivity photon energy

Maximum sensitivity photon energy

Table 7: Material constants

BA.2482.6

(12)

102.A553_0 (12)
0.2451.8 (12)
337.479 (12)
108.817B_A6 (12)
B8.0 (12)

6 x 1079y

6 x 10,4
169.49BA_9 (12)
217.B09B_0 (12)
0.6052.24  x10f,,
1.2A29 x 10773,
1.207B x 10775,
0.BB64.8  x107y,
145001 <107,
L7578 %103,
(12

1.01 (12)
1.05 %1075
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W /mi
m3 /mol,
gu /M
My, /Sy
gu /mg
gu /mg
Ny /mg
P, /m,
Ky
Ky
3/ (80K0)
Pusu
mg /s,
N, /m,
Ju /mol,,
Ju /mol,,

mu/Ql

eAy 2, /mol,

J/mol,

standard state)
standard state)
standard state)
maximum density)
0C)

specific gravity of 1.03)
pressure / water depth)

1 atmosphere )

by the definition of calorie)
25 C)
25 C)
25 C)
25 C)
25 C)
by the definition of candela)
by the definition of candela)

(
(
(
(
(
(
(
(
(1 atmosphere )
(
(
(
(
(
(
(
(



Table 8: Astronomical Constants

Standard gravitational acceleration
Standard atmosphere

Earth’s geoid potential

Earth escape velocity
Gravitational radius of the earth
Equatorial radius of the earth
Astronomical unit

Mean sun day

Tropical year

Universal century

Gravitational radius of the moon
Equatorial radius of the moon
Mean distance of the moon
Synodical month

Nodical month

Gravitational radius of the sun
Equatorial radius of the sun
Radiation of the sun

Luminous intensity of the sun
Sun constant

Luminance of a magnitude 5 star

Universe expansion constant

5.5A54 B
165.0086
0.3719_A81
0.669B_3217
241.B898_22
TA2.4AAB
8A6.7575_4
AB.14A7_261
0.230B_59A6_37
10.0513_16A2_8
4.1A76.416
218.04
3.3513_B
222B.ABTA
2023.1B61
3182.870A 56
5.B475
25.57
0.40
435.1B
1
5.3~7.0
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m, / SZ
Py
mg /s
My, /Sy
mu
mu
my,
Su
Su
Su
mu
My,
ity
clock

clock

W, /rad?
W, /m?2
W, /m2

Sy

square of the escape velocity
f th locit,
(square root of the potential)

(including the atmosphere)

(distance of the sun)

(64 years)

(inverse of the Hubble constant)
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