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III Magnetostatics 

 

§68. Magnetic field and magnetic flux density 

In the case of magnetism as well as in the case of electricity, we can think of the field 

of magnetic force, which is called the magnetic field, and customarily express its 

strength by H. 

As Coulomb's law on magnetism shows that H is made with a central force, we see 

that H has a potential Vm 

 

𝐻 = −grad 𝑉𝑚 .   (III-22) 

 

Vm is called the magnetic potential. Vm is obtained by multiplying the reciprocal of the 

distance from each magnetic pole by the strength of the magnetic pole and dividing by 

4πμ0 

𝑉𝑚 =
1

4𝜋𝜇0
∑

𝑞𝑚𝑖

𝑟𝑖
𝑖  .   (III-23) 

H at a certain place is the force which works on the unit magnetic pole when it is placed 

in that place.However, sometimes there is a risk of changing the magnetic field by 

magnetizing the surrounding material by bringing the magnetic poles. In such a case, 

bring a minute magnetic pole that does not change the magnetic field, define 

 

𝐹 = 𝐻𝑞𝑚    (III-24) 

 

as the force F acting on it, and define H as the limit value at which qm → 0 as the value 

of H = F / qm. 

 

Similarly, the work W necessary to move the magnetic pole qm from the magnetic 

potential 0 to the magnetic potential Vm is given by 

 𝑊 = 𝑞𝑚𝑉𝑚 .         (III-24') 
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IV Relationship between electricity and magnetism 

Chapter 1 Electric Current and Magnetic Field 

 

§79. Magnetic field created by electric current 

The action of a magnet is formally similar in many ways to electricity. That is, it is a 

formal analogy in comparing static electricity and magnetostatics. On the other hand, 

the content relation between the two has not yet been established within the range 

described up to now. The study of magnetism was also relatively naive in the range 

where it was stuck only to the magnetostatics derived from the magnet. The importance 

of magnetism is expanding due to the direct relevance to electricity. Various analogies 

are effective due to various similarities between magnetism and electricity. By further 

stepping on, it has been long since anticipated that there is a direct action between the 

two. Franklin and Davy also mention this, but it was Oersted (1820) that described this 

in a clear form. He puts a magnetic needle under a wire facing the north and south, and 

when electric current is passed through the wire, the magnetic needle is veered. He 

expressed the phenomena by the law that the magnetic pole on the cathode side of the 

electric current always veers to the west. Next, if the magnetic needle is placed on the 

wire, the magnetic pole on the cathode side veers to the east. Moreover, he 

experimented with changing the direction of the wire variously, and found that the veer 

of the magnetic needle is proportional to the cosine (cos) of the angle between the 

direction of the wire and the north-south direction. 

This magnetic action of electric current provides one new way to measure the electric 

current. Schweigger and Poggendorf made the galvanometer on this principle. 

Currently used galvanometers and ammeters are slightly different from this, but there 

is no difference in using magnetic action of electric current. Electric units currently in 

practical use (such as practical units) are all based on the magnetic action of electric 

current and are called electromagnetic unit system. 

In terms of acting on the magnet, the electric current resembles the magnet itself. So 

the magnet gives force to another magnet, so it seems good that the magnet also gives 

force to the electric current, which is a kind of reaction. Further, the force between the 

electric currents is also conceivable. 

 

§80. Ampère’s law 

Thinking like this, Ampère conducted experiments. He did various experiments in a 

genius way and established the fundamental law of action between electric current and 
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magnet and between electric currents of each other. This is an important law 

comparable to Coulomb's law. 

Three facts are fundamental to that law. 

 

① The electric currents of two equal strengths running in mutually opposite 

directions cancel each other and do not produce a magnetic action to the outside. 

That is, as shown in Fig. IV.1-1, if the wire is folded into two, no magnetic field 

appears outside. 

 

 

 

 

 

 

Fig. IV-1- 1 Magnetic fields of opposite electric  

currents of equal strengths cancel each other 

 

 

 

 

② As shown in Fig. IV.1-2, the electric current is passed through the free-running 

wire frame, and the influence of geomagnetism on it is examined, so that the face 

of the frame is always oriented perpendicular to the north-south direction. Also, if 

the direction of the electric current is reversed, it will point in the opposite 

direction. That is, the annular line through which the electric current flows 

behaves as if it were a magnet. 

 

 

 

 

 

 

 

 

 

 

Fig. IV-1- 2 Face of the frame 

becomes perpendicular to the 

geomagnetism 

Fig. IV-1- 3 Electric  current 

creates a circular magnetic field 

according to the right-hand 

screw law 

Fig. IV-1- 4 A magnetic field 

appears so that the S pole 

appears on the paper surface 
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③  In the experiment ②, the direction of the frame behaves as if the direction of the 

screw is the N pole of the magnet when turning the right screw in the electric 

current direction at any time. This may also be said that concentric magnetic 

fields are generated so that the turning direction coincides with the direction of 

the magnetic field when turning the right hand screw so as to proceeding in the 

direction of electric current I in Fig. IV.1-3. In the experiment ②, when electric 

current is passed through, the electric current in each part of the conductor 

produces a magnetic field and behaves as if it becomes a magnet. The direction of 

NS is obvious from Fig. IV.1-4.That is, in the case shown in the figure, S pole 

appears on the front side of the paper surface. 

 

Therefore, Ampère thought as follows. According to ②, the force exerted by the outer 

magnet on the small toroidal electric current is equal to the force exerted on the small 

bar magnet facing the direction perpendicular to this ring. As a reaction of this force, 

this electric current should exert a force on the outer magnet. The force must be equal to 

the force that the small bar magnets assumed here exerts on the external magnets. In 

other words, this electric current ring must create a magnetic field similar to a small 

bar magnet. 

Next, considering the larger annular electric current, this can be regarded as 

superimposition of small ring electric currents as shown in Fig. IV.1-5 according to the 

above property of ①. That is, the face surrounded by this large circle is regarded as a 

group of sections in which the electric current I circulates in a certain direction around 

each section obtained by dividing the original face into small pieces in the vertical and 

horizontal directions. Then, on the line at the boundary of the sections, the electric 

currents flowing around the sections on both sides of the sections just cancel each other, 

leaving only the influence of the electric current at the entire edge portion. In other 

words, the effect of this collection of small ring electric currents is the same as the 

action of the electric current I flowing through the entire edge portion. 

 

 

 

 

 

 

 

Fig. IV-1- 5 Fig. IV-1- 6 Magnetic 

potential in the plane 

including the coil is 0 
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Here, the effect of each small ring electric current is the same as placing a small bar 

magnet perpendicular to the face in that part, respectively. Therefore, the effect of the 

electric current flowing in the periphery on the outside has the same effect as that 

obtained by distributing magnets uniformly on an arbitrary curved surface surrounded 

by this electric current. That is, in other words, when there is an appropriate magnetic 

plate, a magnetic field is created such that the front and back surfaces are N and S poles, 

respectively. The strength of the magnetic moment per unit area of this plate magnet is 

constant anywhere on this plate. In particular, when the electric current flows along a 

curve on the plane, it is the same as a flat plate magnet with this curve as the periphery, 

and the magnetic moment of this magnet is proportional to the product of the electric 

current and the area of the curve. 

Next, let us consider the distribution of the magnetic potential created by such an 

annular electric current. We explain this with the following idea (introduced by Prof. 

Tatsuoki Miyajima). 

 

①  When the electric current flows along the curve on the plane, the magnetic 

potential is 0 on this plane. The reason is as follows. At this time, all the dipoles of 

the magnet equivalent to the electric current are on this plane and are oriented 

perpendicularly to this plane so that all the magnetic fields they make are 

perpendicular to the plane on this plane. Therefore, we can see that the potential 

of the magnetic field created by the coil, i.e. the magnetic potential, is constant 

everywhere in that plane. However, considering that this plane is spreading 

infinitely far, the magnetic potential is 0 there, so the magnetic potential must be 

0 everywhere on this plane. 

 

② Next, the magnetic potential that a certain coil makes at point P is proportional to 

the solid angle when looking at the coil from point P. 
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Fig. IV-1- 7 Magnetic potential at the point O 

due to the electric current S and S ' is 0 

 

To prove them, let us consider the magnetic potential due to the electric currents 

flowing through the two coils S and S' shown in Figures IV.1-7. Here, if you see S, S' 

from the point O, if electric currents of equal strengths in opposite directions flow to 

each other as shown in the figure, and S and S' overlap at all(therefore, of course, the 

solid angles are equal each other), the magnetic potential at the point O is 0. The reason 

is as follows. Furthermore, we add two opposite electric currents flowing on the 

generatrix AA', BB', CC', DD' of pyramid with O at the apex (since these opposite 

electric currents cancel each other to 0, it is safe to assume that it exists). At that time, 

instead of the two electric currents flowing in S and S', we can think of four annular 

electric currents flowing in the directions of ABB'A', BCC'B', CDD'C', DAA'D' 

respectively. However, as mentioned above, since the point O is present on the plane 

containing these electric currents, the magnetic potential at the point O due to the 

respective currents is 0. 

In this case, the above situation is true regardless of the shape of the electric current 

flowing circuit. So let's consider one circuit projected onto the surface of the unit sphere 

centered on point O as S'. Let us consider the electric current on the sphere as a small 
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ring electric current similar to Fig. IV.1-5. If the ring electric current of any part on the 

sphere has the same area, the same contribution to the magnetic potential at the center. 

So in the end, it turns out that the magnetic potential of the point O is proportional to 

the solid angle of the circuit as seen from the point O in whatever form. However, when 

the solid angle including the circuit is defined as the area to cut off the unit sphere, 

when the solid angle including the circuit goes round the periphery of the surface on the 

spherical surface in the same direction as the electric current flowing through the 

circuit, it is decided to take the algebra sum of the area as positive if it is clockwise and 

negative if it turns counterclockwise. 

In addition, it was experimentally confirmed that if the same circuit flows k times as 

much electric current, the magnetic force that it produces also becomes k times, so that 

the magnetic potential of any point also becomes k times. Therefore, from the above, 

when the solid angle of the electric current circuit viewed from that point is Ω, the 

magnetic potential of point P in the space can be written as 

 

     𝑉𝑚 = 𝐶𝐼Ω .   (IV.1-1) 

 

C is a proportional constant. The value of C changes depending on the way of unit of I 

and Vm. In general, it is widely practiced that this C is a number without dimension, 

thereby deriving the unit of the electric current I from the unit of the magnetic quantity, 

and such a unit system is called an electromagnetic unit system. The MKS rationalized 

unit system used in this book is also of this type, and it is stated here that C = 1 / 4π. 

Therefore, 

 

     𝑉𝑚 =
1

4𝜋
𝐼Ω.   (IV.1-2) 

 

Since the unit of Vm is determined to be μ 0 = 4π × 10 -7 by the magnetic Coulomb's law, 

the unit of I will be determined from this, which is called ampere. Therefore, electric 

units, amperes, coulombs, etc. are essentially magnetically determined. This is probably 

due to the fact that almost all of the application and generation methods of electricity 

are related to electromagnetic phenomena, and the fact that electromagnetic methods 

are mainly used for measurement related to electricity. In fact, if we use electrostatic 

units, the everyday values of the amount of current etc. are inconvenient, bringing very 

large numbers. 

As is evident from (IV.1-2) (because Ω has no dimension), the unit of the magnetic 

potential Vm is also ampere. 
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Thus, when considering the solid angle seen from O of 

a certain curve, it must be noted that there is 

arbitrariness. By projecting this curve onto the 

spherical surface, the spherical surface can be divided 

into two parts (in simple cases), but different values are 

obtained depending on which area of which is 

considered. If the area of one is S, the other is 4πR 2 - S, 

but since the direction in which currents flow 

around them is opposite, the latter should rather 

be written as S'= S - 4 π R 2. Therefore the solid 

angle is  

 

 Ω
′

=
𝑆′

𝑅2 =
𝑆

𝑅2 − 4𝜋 = Ω− 4𝜋,  (IV.1-3) 

 

which is different by 4π. 

Now, when considering the magnetic potential, let us consider the magnetic potential 

of a magnet as being distributed on a certain edge which is the edge of the electric 

current circuit instead of the electric current. Therefore, from the point O, the solid 

angle on the side of this magnet surface should be taken. Only in that case the correct 

magnetic potential can be obtained. Therefore, when the point O passes through a 

certain face of this magnet, at that moment, the solid angle moves to the opposite side, 

so Ω will increase or decrease discontinuously by ± 4π.So then, 

 

 
1

4𝜋
𝐼′ (Ω

′
−Ω) =

1

4𝜋
𝐼 × 4𝜋 = 𝐼.     (IV.1-4) 

 

In other words, there is a discontinuity of only the magnetic potential I in the back side 

and the front side of the face of this magnet. 

By the way, in fact, it was mere fictitious for the sake of convenience that we thought 

that the magnets were distributed on the surface with the electric current circuit as the 

edge, and in reality, such a special surface does not exist anywhere . Therefore, it is not 

realistic that the magnetic potential becomes discontinuous in such a plane. However, if 

we do not think about such discontinuity, starting from the point P, once around the 

electric current flowing line and reaching the original point P, the magnetic potential 

increases or decreases by I. If it comes n times, the magnetic potential changes by nI. In 

Fig. IV-1- 8 Add 4 π to the solid angle 

according to the number of times it 

passes through the curved surface 

bordering the loop 
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other words, the magnetic potential at the same point in the space does not become one 

constant value, and it becomes a multivalent function. This is the same situation as 

Riemann surface in complex function theory. When there are several circuits, it turns 

them over many times to bring more complicated multivalency. 

In other words, the magnetic field produced by the magnet was a place of preservation 

with a clear potential, but the magnetic field produced by the electric current has no 

spatial monovalent potential. This means that even if the magnetic pole qm starts from 

one point of the magnetic field and returns to its original position all around, the sum of 

work 

 

∮ 𝑞𝑚𝐻 𝑑𝑠    (IV.1-5) 

 

does not become 0. According to the law of conservation of energy, this energy must be 

supplied from somewhere. Actually, this energy is obtained from a power supply that 

supplies electric current to the circuit by electromagnetic induction to be described later. 

On the other hand, it is necessary to note that the magnetic poles are never actually 

present alone and necessarily accompany N and S poles. The magnetic potential at a 

certain point in the space is not measured alone, and only the difference between the 

magnetic potential of a certain place of the N pole and the magnetic potential of the S 

pole is always a problem. So, for example, suppose that a soft wire is magnetized, and N 

and S poles are present at both ends. The S pole is fixed to one point. Let's move the N 

pole first at point P, then turn around the electric current and return to point P. At this 

time, the wire is stuck in the electric current circuit once, differently from the beginning. 

In other words, even if the magnetic pole of "sticking" comes around once to the original 

position, it never returns to the same state as the original. Therefore, as long as there is 

no single magnetic pole, inconvenience never occurs even if the magnetic potential is not 

a monovalent function. 

Writing the above result into the equation is 

 

∮ 𝐻 ∙ 𝑑𝑠 = 𝑛𝐼 .    (IV.1-6) 

 

Here, n is the number of times the integrating path is wound a circuit through which 

the electric current passes. 

The number n of how many times the integration path C and the current circuit S are 

entangled is a so-called topological quantity. If both of these curves are continuously 

deformed (without cutting or intersecting), the number n does not change. If n ≠ 0, these 
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two rings are entangled and can never leave. If one 

side (for example, C) is stretched out, S sticks in the 

opposite way. In that case, S wraps C n times, that is, 

from the topological point of view, there is no 

distinction which is wound, which is a mutual equal 

relationship. 

When there are many conducting wires through 

which the electric current flows, the magnetic 

potential resulting therefrom is the sum of the 

magnetic potentials produced by the respective 

electric currents, so that the magnetic field H is also 

the sum of the respective magnetic fields H1...Hn. 

Considering the integral  

 

∮ 𝐻 𝑑𝑠 = ∑ ∮ 𝐻𝑖𝑑𝑠𝑖  ,  (IV.1-7) 

 

that goes around a certain closed curve C, if the ith electric current is Ii  and this 

current is entangled with the curve C ni times (if the direction of current is reversed, ni  

is negative)  

 

∮ 𝐻 𝑑𝑠 = ∑ 𝑛𝑖𝐼𝑖𝑖  .   (IV.1-8) 

 

Of course, ni = 0 for the electric current not entangled with C. That is, the right side of 

(IV.1-8) means the algebraic sum of the electric currents flowing through the curved 

surface with the curve C as an edge. 

 (IV.1-8) determines the amount of electric current flowing through any curved 

surface in space when given the field of H. Therefore, contrary to (IV.1-2), it can be 

regarded as an equation for obtaining the electric current from the magnetic field. In 

this sense, (IV.1-8) is an important equation playing a role corresponding to the Gauss' 

theorem (I.3-25) in static electricity in the magnetic field theory. 

 

Fig. IV-1- 9 Passing through the twice 

winding coil once is equivalent to 

twisting the winding coil twice 


