Trying to check
lognmax(n) = log(max(n))/log(n)
n | max(n) | lognmax(n) |
---|---|---|
27 | 9232 | 2.7702921473225270973 |
447 | 39364 | 1.7337985056559493653 |
639 | 41524 | 1.6461585349156394626 |
703 | 250504 | 1.8963468156818830341 |
1819 | 1276936 | 1.8731541446083022596 |
4255 | 6810136 | 1.8829828887954350854 |
4591 | 8153620 | 1.8873635826111263587 |
9663 | 27114424 | 1.8652425380222833139 |
20895 | 50143264 | 1.7824391362435275872 |
26623 | 106358020 | 1.8138540333287852068 |
31911 | 121012864 | 1.7946133377815046826 |
60975 | 593279152 | 1.8334338047327572736 |
77671 | 1570824736 | 1.8804991567712454073 |
113383 | 2482111348 | 1.858686744015530798 |
138367 | 2798323360 | 1.8375487515714095702 |
159487 | 17202377752 | 1.9673513229796590878 |
270271 | 24648077896 | 1.913138207015879498 |
665215 | 52483285312 | 1.8409910542107325618 |
704511 | 56991483520 | 1.8392640846708863322 |
1042431 | 90239155648 | 1.8204235434025088373 |
1212415 | 139646736808 | 1.8319641019342189245 |
1441407 | 151629574372 | 1.8154199184637089691 |
1875711 | 155904349696 | 1.7842439312671941191 |
1988859 | 156914378224 | 1.7774831929811105369 |
2643183 | 190459818484 | 1.7563967448581379868 |
2684647 | 352617812944 | 1.7961591030955438878 |
3041127 | 622717901620 | 1.8192547405182980373 |
3873535 | 858555169576 | 1.8114106722913689741 |
4637979 | 1318802294932 | 1.8181191024373793748 |
5656191 | 2412493616608 | 1.8337537269140500102 |
6416623 | 4799996945368 | 1.8628867257452770168 |
6631675 | 60342610919632 | 2.0201385540797855264 |
19638399 | 306296925203752 | 1.9862788884772012965 |
38595583 | 474637698851092 | 1.9345270521247527573 |
80049391 | 2185143829170100 | 1.9408813273460452312 |
120080895 | 3277901576118580 | 1.920372052693041628 |
210964383 | 6404797161121264 | 1.898859713255962811 |
319804831 | 1414236446719942480 | 2.1341290308817894479 |
1410123943 | 7125885122794452160 | 2.0605868024039021545 |
8528817511 | 18144594937356598024 | 1.939277301613860048 |
According to this computation, the ratio is near to two.
That is, there is an upper bound s, and all n larger than n0,
Conjecture
max(n) ≤ ns (s=2+ε)
If this is true, n always smaller than ns, that is
"Any n does not converge to infinity".
(Of course there is a possibility n falls into a loop.)
According to the announcement from Mark Gibson,
Tomas Oliveira and Silva are trying the same computation, searching the maximum value for n.
(3x+1 conjecture verification results).
Following table is from there results.
n | max(n) | lognmax(n) |
---|---|---|
8528817511 | 18144594937356598024 | 1.939277301613860048 |
12327829503 | 10361199457202525864 | 1.8844141998050365199 |
23035537407 | 34419078320774113520 | 1.8853549708636835626 |
45871962271 | 41170824451011417002 | 1.8397507395602994688 |
51739336447 | 57319808570806999220 | 1.8441884552141065432 |
59152641055 | 75749682531195100772 | 1.845472385932052334 |
59436135663 | 102868194685920926084 | 1.8574519394374376045 |
70141259775 | 210483556894194914852 | 1.8738030346819725479 |
77566362559 | 458306514538433899928 | 1.8973164044963655153 |
110243094271 | 686226824783134190180 | 1.8869593030094581278 |
204430613247 | 707630396504827495544 | 1.8433952354124018303 |
231913730799 | 1095171911941437256778 | 1.8511991156920975808 |
272025660543 | 10974241817835208981874 | 1.9275143419327129426 |
446559217279 | 19766638455389030190536 | 1.9138338439360873776 |
567839862631 | 50270086612792993117994 | 1.9313317500585215646 |
871673828443 | 200279370410625061016864 | 1.9515029625083460762 |
2674309547647 | 385209974924871186526136 | 1.8979074422895333933 |
3716509988199 | 103968231672274974522437732 | 2.0697391100054868976 |
9016346070511 | 126114763591721667597212096 | 2.0147205198519785498 |
64848224337147 | 637053460104079232893133864 | 1.9406583879018438272 |
116050121715711 | 1265292033916892480613118196 | 1.9269728896148309796 |
201321227677935 | 2636975512088803001946985208 | 1.9170384364615899565 |
265078413377535 | 2857204078078966555847716826 | 1.903572671092275162 |
291732129855135 | 3537558936133726760243328464 | 1.9045097584416383577 |
394491988532895 | 6054282113227445504606919650 | 1.9033975039320943561 |
406738920960667 | 12800696705021228411442619682 | 1.923925399587870349 |
613450176662511 | 22881441742972862145992619776 | 1.917764852866688732 |
737482236053119 | 37684665798782446690107505928 | 1.922023282775447441 |
1254251874774375 | 1823036311464280263720932141024 | 2.0042405729079157097 |
5323048232813247 | 1964730439297455725829478995944 | 1.9263000122389505916 |
8562235014026655 | 13471057008351679202003944688336 | 1.9538196397458298822 |
10709980568908647 | 175294593968539094415936960141122 | 2.0114905542829812762 |
49163256101584231 | 301753104069007668258074264675786 | 1.9458633485710065322 |
82450591202377887 | 875612750096198197075499421245450 | 1.9473832303450652195 |
93264792503458119 | 2115362774686865777485863406680032 | 1.9638149196720639522 |
previous | index |
---|