4. Relation between n and max(n)

Relation between n and max(n)

Trying to check

lognmax(n) = log(max(n))/log(n)

n and max(n)
nmax(n)lognmax(n)
2792322.7702921473225270973
447393641.7337985056559493653
639415241.6461585349156394626
7032505041.8963468156818830341
181912769361.8731541446083022596
425568101361.8829828887954350854
459181536201.8873635826111263587
9663271144241.8652425380222833139
20895501432641.7824391362435275872
266231063580201.8138540333287852068
319111210128641.7946133377815046826
609755932791521.8334338047327572736
7767115708247361.8804991567712454073
11338324821113481.858686744015530798
13836727983233601.8375487515714095702
159487172023777521.9673513229796590878
270271246480778961.913138207015879498
665215524832853121.8409910542107325618
704511569914835201.8392640846708863322
1042431902391556481.8204235434025088373
12124151396467368081.8319641019342189245
14414071516295743721.8154199184637089691
18757111559043496961.7842439312671941191
19888591569143782241.7774831929811105369
26431831904598184841.7563967448581379868
26846473526178129441.7961591030955438878
30411276227179016201.8192547405182980373
38735358585551695761.8114106722913689741
463797913188022949321.8181191024373793748
565619124124936166081.8337537269140500102
641662347999969453681.8628867257452770168
6631675603426109196322.0201385540797855264
196383993062969252037521.9862788884772012965
385955834746376988510921.9345270521247527573
8004939121851438291701001.9408813273460452312
12008089532779015761185801.920372052693041628
21096438364047971611212641.898859713255962811
31980483114142364467199424802.1341290308817894479
141012394371258851227944521602.0605868024039021545
8528817511181445949373565980241.939277301613860048

According to this computation, the ratio is near to two.
That is, there is an upper bound s, and all n larger than n0,

Conjecture

max(n) ≤ ns   (s=2+ε)

If this is true, n always smaller than ns, that is
"Any n does not converge to infinity".
(Of course there is a possibility n falls into a loop.)

Appendix (June 04, 2001j

According to the announcement from Mark Gibson, Tomas Oliveira and Silva are trying the same computation, searching the maximum value for n. (3x+1 conjecture verification results).
Following table is from there results.

n and max(n)  where n < 112589990684262400
nmax(n)lognmax(n)
8528817511181445949373565980241.939277301613860048
12327829503103611994572025258641.8844141998050365199
23035537407344190783207741135201.8853549708636835626
45871962271411708244510114170021.8397507395602994688
51739336447573198085708069992201.8441884552141065432
59152641055757496825311951007721.845472385932052334
594361356631028681946859209260841.8574519394374376045
701412597752104835568941949148521.8738030346819725479
775663625594583065145384338999281.8973164044963655153
1102430942716862268247831341901801.8869593030094581278
2044306132477076303965048274955441.8433952354124018303
23191373079910951719119414372567781.8511991156920975808
272025660543109742418178352089818741.9275143419327129426
446559217279197666384553890301905361.9138338439360873776
567839862631502700866127929931179941.9313317500585215646
8716738284432002793704106250610168641.9515029625083460762
26743095476473852099749248711865261361.8979074422895333933
37165099881991039682316722749745224377322.0697391100054868976
90163460705111261147635917216675972120962.0147205198519785498
648482243371476370534601040792328931338641.9406583879018438272
11605012171571112652920339168924806131181961.9269728896148309796
20132122767793526369755120888030019469852081.9170384364615899565
26507841337753528572040780789665558477168261.903572671092275162
29173212985513535375589361337267602433284641.9045097584416383577
39449198853289560542821132274455046069196501.9033975039320943561
406738920960667128006967050212284114426196821.923925399587870349
613450176662511228814417429728621459926197761.917764852866688732
737482236053119376846657987824466901075059281.922023282775447441
125425187477437518230363114642802637209321410242.0042405729079157097
532304823281324719647304392974557258294789959441.9263000122389505916
8562235014026655134710570083516792020039446883361.9538196397458298822
107099805689086471752945939685390944159369601411222.0114905542829812762
491632561015842313017531040690076682580742646757861.9458633485710065322
824505912023778878756127500961981970754994212454501.9473832303450652195
9326479250345811921153627746868657774858634066800321.9638149196720639522


previous index  

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima