### n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
600 <= n <= 699, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010

nxyz
600(8762318)(870406166)(-870406462)
601-4-49
6026-79
603348
6040-59
6051-59
* 6067613029812638615657-2659573862
* 6092012902442030430569722-33121417879
610-358
6114-1314
6122-59
6135-810
6147-910
615-11-1719
* 618536858015435275-15648793
6192329-33
620-11-2526
621-403-434528
622-477
623467
624650695758290-892751
627???
628776951-1099
629-258
630-3-710
6313-59
6321-1415
633???
636-158
637058
638158
639-678
640319361-430
641-2312-39084161
642-1250-49915017
645258
646-171-175218
647-10-1215
6481945-46
649-2-710
650-6-1113
651-77-134142
654-73-7392
655-18-4647
656-1-710
657-2-49
6581-710
659-377
* 660-159116-199163228487
* 663-105841-10685921068938
664358
6650-49
6661-49
6671618-21
6684-59
6691010-11
6725-1314
6732-49
6747-1011
67546179-180
676-78-197201
677-140-956957
678-277
681-788
6827291313-1384
683-15-2527
684567
685-177
686-35-120121
687177
690-43-163164
691300614-637
6923-49
6934445-56
694277
6954-1415
6963368545634-51077
699-22-6162

* 606, 609 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 618 : Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation x3+y3+z3=n, Math. Comp. 55(1997),841-851.
* 660, 663 : Elkies (1996)

back (Japanese version) back (English version)

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima