### n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
500 <= n <= 599, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010

nxyz
* 501-19895059-2610931629500376
502-126-163185
503-1-28
5044551684-1695
5051-28
506-5-1415
50767610147-10148
510-1-18
5110-18
512008
513018
514118
5153-810
* 51687856130585-142685
519-128
520-3-1314
521128
5225-1112
523-7-1113
5241819-23
5251634-35
528218653-661
529-15-1620
* 530-11079901-4540432145623198
531-238
532457
5334-1213
* 53447691741465441884459-6460362461
5371726-28
538-138
539038
540138
541-12-2728
* 542-47673-207056207895
543-116-212223
546-1-1314
547238
5481-1314
549-348
5501213-15
551-267
5522169136088-38531
5552-1314
* 556595431379046-1379083
557566
558-167
559067
560167
561-577
* 56453872419107-1300749634-53872166335
5651717-21
566338
567267
568-11-1316
569-33-7779
570268529-551
573-458
5743-1314
575-148
576-7-1718
577148
578166181-219
579???
582-25-7374
583-17419-4822348969
5841530-31
585-16-3940
586367
5871219-20
* 588-3650204951-50973455545657478787
591-145-244260
59247185-186
593557
594-2-911
5952137-39
596-2-59
59724614783-4991

* 501 : Kenji Koyama, Yukio Tsuruoka, and Hiroshi Sekigawa, On Searching for Solutions of the Diophantine Equation x3+y3+z3=n, Math. Comp. 55(1997),841-851.
* 516, 542 : Elkies (1996)
* 530, 534, 556, 588 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 564 : Leonid Durman (April 19, 2007)