### n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
400 <= n <= 499, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010

nxyz
4023768541378-49915
403-85-156164
404-457
405456
406-147
407047
408147
4113538-46
4121117-18
4133-79
4143-58
415247
416-383-390487
417145502-506
* 4208859060149051-2680209928162-8776520527687
421-3-48
422-5-1314
4231823-26
4243-1112
425-14-3233
426-38-9597
429182284-307
4301829-31
431-166
43220582659-3019
433166
434347
* 435-2058260-54341965530891
438-37-130131
* 439264488331574-380193
44010551878-1983
441-357
442-3-1213
443-26-7778
* 444346079514820289-14882930
447-1-48
4482362-63
4491-48
4504-79
4514-58
* 452-2267462975-30417904133414300774
4531013-14
4565-1011
457-31-7072
458-3-38
459-60-8594
460-257
461-3-810
* 462-1024946-18324111933609
4651111-13
466556
467-157
468057
469157
470-677
471447
474-7-1617
4753-48
476257
477-2-38
* 478-1368722-1343450313439237
479-5-59
480-149615-10000521001167
483-4-1314
484-1-38
4850-38
4861-38
487-1-810
4884954-65
4891-810
492-19-4950
4932-38
494-372-403489
495357
4963-1213
4972125-29
498-803-11121237

* 420 : Leonid Durman (April 19, 2007)