### n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
300 <= n <= 399, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010

nxyz
3003455-59
3033244-49
304-3-1011
305-8-1617
3063-47
307346
308-2-37
309-26-3237
* 31280644343210005738-213897223
313-28-3641
314455
315-1-37
3160-37
3171-37
* 3184783596379920549442727-49068024704
* 321-66319-321142322082
322-4-79
323-4-58
3242-37
325-41-5965
326-11-2324
327-2-27
330-1-1011
3310-1011
3321-1011
333-256
334-1-27
3350-27
3361-27
3392-1011
340-156
341056
342156
343007
344017
345117
348656965-1057
349256
350-127
351027
352127
353-243-479499
354-8-1113
35717575654-5710
3583-1011
359227
360-3-58
3613376-78
362-237
363-5-810
* 366241832223257167734571306-266193616507
* 367-117360-857002857735
368356
369-137
370037
371137
3721946-47
375(5)(5)(5)
376-6853-2106721306
377-15-2426
378237
379-2-58
380-347
3812258-59
384470129521807-626572
3856-78
386-1-58
3870-58
3881-58
389-2-1112
390???
3937777-97
3942-79
3952-58
3965-910
397337
398910-11
399-247

* 312 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html
* 318, 366 : Leonid Durman (April 19, 2007)