### n=x3+y3+z3

D5 Sum of four cubes.
in Richard K. Guy, "Unsolve Problems in Number Theory" Second Edition, Springer-Verlag, 1994

Solutions of n=x3+y3+z3
200 <= n <= 299, not equal to 4 or 5 (mod 9) , 0 <= |x| <= |y| <= |z| <= 1010

nxyz
20073103-114
20173178-182
204-7-1314
205-13-1921
206-5-1011
207-1-26
208104145-161
2091-26
210-2-57
213-859-15641646
214-1-16
2150-16
216345
217016
218116
2191-57
2222035-37
223-355
22499101-126
225126
2262-57
2272457951748-53534
228-1577-37883877
* 231-344065-711814737660
2321739-40
2334-78
234113114-143
235-236
236-417-476565
23715856871-6899
240-13-2829
24189-10
242-255
243-119-529531
244136
2453-57
2461325-26
249-155
* 250-79220635-216863304220331429
251155
252-3-47
253445
254-17-4142
255-320-377442
258255
259-7-911
260912-13
261-5-79
262-5-58
263-2-910
2644301279-1295
267-4-1011
26851385667-6823
269-3-68
270-1-910
271-2-47
2721-910
2733644009-4010
276239615131-15151
277355
278-1-47
279-146
2801-47
281146
2824-57
285-352-10511064
286363416-493
2872-47
288-7-1415
289-3-37
* 2904264170072070897315-2076906362
291-10103-3172132059
2945-78
295-1-68
296-867-19982051
2971-68
2983-910
299208307-336

* 231 : Elkies (1996)
* 250, 290 : D. J. Bernstein (July 29, 2001) http://cr.yp.to/threecubes.html

back (Japanese version) back (English version)

E-mail : kc2h-msm@asahi-net.or.jp
Hisanori Mishima