Wol4 93, 94
Subject: Wolstenholme 4 factors
Date: Fri, 20 Nov 1998 13:54:49 +0000
From: Allan MacLeod <MACL-MS0@wpmail.paisley.ac.uk>
To: kc2h-msm@asahi-net.or.jp
Hello again,
You introduced the Wolstenholme 3 and 4 numbers recently.
The following two factors should be of interest.
Allan MacLeod
(a) Wolstenholme 4 - with n=94
Input number is
16308573088521616563226537017430534564465823715260476422000128903616987738298432825972851537531695978274666822014304794320707116052775989217462799179 (149 digits)
Using B1=3000000, B2=300000000, polynomial x^30, sigma=469812695
Step 1 took 3479330ms for 39070093 muls, 3 gcdexts
Step 2 took -2646678ms for 16480797 muls, 29004 gcdexts
********** Factor found in step 2: 401428769488552579706116617333217
Found probable prime factor of 33 digits: 401428769488552579706116617333217
Composite cofactor
40626318610148052947037514161391710285597811738865016685424103958998292433336039845263803419061445974913083769442987 has 116 digits
(b) Wolstenholme 4 - n=93
Input number is
356575634892489177898614067667874251448880737949743366394355139796916124801801319520303916492719530191166545418732511706118823 (126 digits)
Using B1=1000000, B2=100000000, polynomial x^18, sigma=1475585527
Step 1 took 1863461ms for 12986907 muls, 3 gcdexts
Step 2 took 935275ms for 5771003 muls, 12687 gcdexts
********** Factor found in step 2: 254928443224114335245809
Found probable prime factor of 24 digits: 254928443224114335245809
Composite cofactor
1398728326987876000585166847803276155660527898845921096567461338512987055966141182803621357984723956247 has 103 digits
index
E-mail : kc2h-msm@asahi-net.or.jpHisanori Mishima