j(tau) n=305,311,320,322
Subject: j(tau) n=305,311,320,322
Date: Fri, 23 Oct 1998 09:52:06 +0000
From: Allan MacLeod <MACL-MS0@wpmail.paisley.ac.uk>
To: kc2h-msm@asahi-net.or.jp
Hello,
I have moved on to the 301-400 range - but still looking at 286 and 300.
Some initial results follow.
Allan MacLeod
Coefficient 305 of j(tau)
Input number is
53352823741698078108418229083086034591925361228061538158216295077590112417383062059 (83 digits)
Using B1=1000000, B2=100000000, polynomial x^18, sigma=234721933
Step 1 took 198406ms for 12986907 muls, 3 gcdexts
Step 2 took 98791ms for 5771003 muls, 12687 gcdexts
********** Factor found in step 2: 60703299950406299574319
Found probable prime factor of 23 digits: 60703299950406299574319
Probable prime cofactor 878911423024556291381309745853675869456127098853710859979461 has 60 digits
Coefficient 311 of j(tau)
Input number is
8361890555234230927543464274611833871011778408934926959565973922342163003434649992062146786481
(94 digits)
Using B1=1000000, B2=100000000, polynomial x^18, sigma=1434091968
Step 1 took 227637ms for 12986907 muls, 3 gcdexts
Step 2 took 115439ms for 5771003 muls, 12687 gcdexts
********** Factor found in step 2: 4222146784193785718420871953839
Found probable prime factor of 31 digits: 4222146784193785718420871953839
Probable prime cofactor 1980483148179066618128535828120708514112043563485341629775358879 has 64 digits
Coefficient 320 of j(tau)
Input number is
48932443303170443032606156718511981082282238050532412531409083661453007 (71 digits)
Using B1=1000000, B2=100000000, polynomial x^18, sigma=1534537918
Step 1 took 167857ms for 12986907 muls, 3 gcdexts
Step 2 took 85769ms for 5771003 muls, 12687 gcdexts
********** Factor found in step 2: 760127428465995410947631
Found probable prime factor of 24 digits: 760127428465995410947631
Probable prime cofactor 64374000293504018001955105402287923828922988897 has 47 digits
Coefficient 322 of j(tau)
Input number is
3758890848671601110573491002932127687316907406011356712936024953 (64 digits)
Using B1=1000000, B2=100000000, polynomial x^18, sigma=1236331051
Step 1 took 142637ms for 12986907 muls, 3 gcdexts
Step 2 took 73022ms for 5771003 muls, 12687 gcdexts
********** Factor found in step 2: 9867321886381473198530317
Found probable prime factor of 25 digits: 9867321886381473198530317
Probable prime cofactor 380943369635026156366730766777635521309 has 39 digits
index
E-mail : kc2h-msm@asahi-net.or.jpHisanori Mishima