Ball Semiconductor技術会議報告
 1998年7月14日〜16日に開催されたBall Semiconductor社の技術会議
に参加した時の内容を報告します
 本会議に参加した目的は、
   1. 半導体量産工場建設の建設費の低減を可能とする技術なのか
   2. 顧客の細かい要求に対応できる半導体を短期間・必要な数量作る技術なのか
を知りたかったからです。 発表内容からは、化学プラントの発想で半導体素子を作るのは
有効な方法ではないかと感じました。
本技術の実用化は、微細化の要求が少ないバイポーラ(ダイオード・トランジスタ)素子で早く
に実現できるのではないかと思います。本会議( 実際は、研修員発表のような感じ )の冒頭
に創業者は、限られたリソース(資金・人・時間)で開発・量産化を行うため、基礎技術の開発
以降で自分たちができるのは、微細なLSIではなく太陽電池等の半導体であると語っていました。
 
 下記の記載で、図番が空欄になっています。
*************************



Ball Semiconductor社



会社概要

社 名:ボール・セミコンダンクター・インコーポレイテッド
代表者:会長兼社長  石川 明
本 社: 米国テキサス州アレン市(ダラス近郊)
設 立:1996年10月

  創業者である 石川 明氏が考案した、Si球を使った半導体素子の開発を行ってい
る。現在の主な出資者は日系企業が占めている。開発開始から1年半で、装置のプロ
トタイプの開発を終了し、P―N接合ダイオード・MOSダイオードを実現する所ま
で開発が進んでいる。98年7月の技術会議は、今後の出資者の募集や技術のライセ
ンス先への宣伝を目的として開催されました。
技術会議に参加する迄は、実現性が低いのではないかと考えていましたが、実際に試
作品の完成データを見ると実現可能ではないかと考えるようになりました。技術会議
の参加者の多くは出資企業や協賛大学の日本人でした( 60%ぐらい )。
  半導体メーカーの参加者は、ほとんどいなかったのではないかと思います。実際
の装置開発も日系企業が参加しています。三井ハイテック・ディスコ・新日鉄などの
名前が、展示パネルやプレセンテーション資料に記載されていました。


****************


概要

ボ―ルセミコンダクタ社は元TI副社長の石川氏と仲野氏が1996年に設立した、
Si球表面に半導体を形成する技術を開発する会社である。同社は1997年から開
発を始め、3年間(*1)の技術・装置の開発後、量産工場を建設し、半導体の量産
開始を目指している。今回の技術会議の目的は、Si球半導体の技術を公開し、協賛
する企業を募ること 及び 同技術の普及を目的としている。
現在は、
 (1)多結晶poly−Siを溶かし、Si球を形成する技術の開発
 (2)酸化・拡散・ホトリソ・金属膜形成・実装の各要素技術の開発
 (3)上記を実現する非接触処理装置の開発
 (4)Si球への回路設計のCADの開発
を進めている。今回の発表の中では、各要素技術を統合し、MOSダイオード・
PN接合ダイオードを製作して測定した電気特性を発表していた。
現在のボールセミコンダクター社の協力企業 及び 大学は、ほとんど日本でした。

例:  
poly―SiからSi球への形成 ―――(信越半導体)?
Si球の研磨                    ―― Disco
Si球処理の配管技術            ―― 三井ハイテック
ホトリソ用材料関係              ――東京応化
Si球へのバンプ形成 技術       ―― 新日鉄
露光装置内Si球位置決め技術    ――東京農工大

同社が目指しているSi球半導体の特徴は、
 (1)1mmΦのSi球上に半導体を形成し、ベア実装を行う
 (2)連続したチューブ内でSi球を加工することによるクリーンルームレス化
 (3)装置の小型化(低価格化)等による、Low Cost半導体工場の実現
 (4)上記による、現状比1・10のチップコストの実現
 (5)CT=5日 (poly―Si 〜 Si球半導体の完成まで)
である。



各要素技術

1.非接触処理の基本[流量計の中の浮子の原理]
  仕組みは、シンプルです。石英ガラスのチューブの下からエアー(又は ガス)を
吹き上げ、重力・吹き上げ力が力が釣り合った状態でSi球を保持 又は 落下させ
る。





**チューブ壁面と球の間に流れるエアーにより壁面との接触を防止できる**

2.Si球の形成
Si球の形成は、図*のフローで行う。数mmの粒をICPで、 2000
〜8000°Kに加熱し、液滴状のSi球を形成す(この時に流すガスに、Br2や
POCL3等を入れることで不純物添加も可能)。その後に研磨し、Si球にする。

3. 酸化・拡散・CVD(パッシベーション・メタル形成
                   4. の非接触処理技術を応用している。
 3.1 酸化
 非接触で かつ 球体であるためウェーハのように高温で「そる」という問題がないの
で、通常(1100℃位)より高い温度(1300℃位)の処理が可能である。
 同社の実験結果では、「結晶面(100)、(111)による拡散速度の差は、Si
球では高温処理のため見られない。また酸化は、Deal−Grove則と合致して
いた。」という報告であった。
     3.2 拡散
酸化の時のガスを変えて行う
(1) N型拡散 ――― POCl3+O2
 15分のDepoと15分のDrive Inで、3.7μmの拡散層を形成
(2) P型拡散―――BBr3+O2
       **結晶方位による拡散速度の違いは、処理温度がウェーハに比べ高温のため、差が無いと語っていました。**
    3.3 CVD
(1) Si3N4
 Si3N4は、850℃程度で形成する
 Gasは、SiH4とNH3?
 成長速度は、500Å/75sec(6Å/sec)程度

(2) TEOS
 成長速度は、1500Å/180sec(8Å/sec)

(3) メタル形成
 AL配線層の形成には、TDMATガスを使用し、形成する。このガスで形成される
AL膜は高密度のALのアイランド構造となっている。

4.  エッチング
配管内に液体を流して、Si球をエッチングする。エッチ後のSi球は、希釈後N2
で配管内で乾燥し、次の工程へ送る。
         Dryエッチングについては、現在検討中である。

5.  ホトリソ技術
塗布・ベーク・現像も配管内で行っている。レジストは、東京応化のOFPR−
800の改良型(10cp)を使用している。現在のレジスト塗布は図*のようにレ
ジスト膜にSi球を落下し、包み込んでいる。
 パターニング後のSEM写真では1.5μm程度のラインまで解像していた。現在は
膜厚ばらつきのためか?、Si球上の配線がところどころ消失していた。
 露光は図*のような露光装置を使用して、一括露光を行っている。

 将来のホトリソ技術としては、球面形状に立体的に桔像させる?ことが可能なホログ
ラフィー技術やEB直描技術を利用する。
 Si球の非接触の位置決め技術は、東京農工大で開発された超音波モーター(Ultra 
sonic Spherical Motor)を使用している。球の回転・停止をビデオで見せていた。実
際に球の一部をカットした物(Si球)を使って、回転・停止・逆回転(X・Y・Z
軸方向全て)ができることを実証していた。

 球の移動も非接触で保持し、移動を行っていた(図*)

 露光工程では球が配管外に出るため、露光装置の部分はクリーンルームが必要とな
る。

6. 電極形成技術
 Si球半導体同士やプリント基板との電気的接続には、Auボールを使用している。
実際にPCBとSi球半導体、Si球同士を接続したサンプルを顕微鏡で見れるよう
にしていた。

 Auボールの形成・接続技術は、新日鉄が協力していた。

7. クラスタ技術
 直径1mmΦの表面積では、現状のVLSI回路全てをSi球上に描画することは不
可能である。そのため、Si球毎に別々の機能を持たせ、それらを集積しVLSIを
作り上げる案を提唱していた。




8.TCAD
 従来にない配線構造(3次元)のため、専用のCADも開発していた。実際に発表の
席上 及び 展示室でソフトを走らせた状況をデモしていました。


9. 試作品の電気特性
(1)  MOSダイオード 
     (1300℃で SiO2膜形成+Al−CVD+ALホト)
 発表したデータでは、整流特性は出ていませんでした。
(2)  PN接合ダイオード
 ブレークダウン電圧までは測定していないが、整流特性の出たデータとなっていました。





10.今後の計画について
 同社は2000年には、Si球半導体の量産に入ることを目指している。しかし、そ
の時点で何を作るかについては、明確になっていない。IC開発者のジャック・キル
ビー博士他半導体の先達者を招きアドバイスを受け、方針を検討している状況でした。